FINAL

LANDFILL FEASIBILITY STUDY WORK PLAN FOR REMEDIAL INVESTIGATION / FEASIBILITY STUDY / DECISION DOCUMENTS

FORT MONMOUTH, OCEANPORT, MONMOUTH COUNTY, NEW JERSEY

BRAC 05 Facility Contract W912DY-09-D-0062 Task Order: 0012, Project No. 369857

Submitted To:

U.S. Army Engineering and Support Center Huntsville, Alabama

Prepared By: PARSONS

401 Diamond Dr. NW, Huntsville, AL 35806

Revision No. 1 March 2015

1 2	LAN	FINAL OFILL FEASIBILITY STUDY WORK I	PLAN
3			
4 5	Project Title:	Remedial Investigation/Feasibility Study/Dec Fort Monmouth, Oceanport, Monmouth Cou	,
6	Client Name:	U.S. Army Engineering & Support Center (I	USAESCH)
7 8	Contract Name:	Remedial Investigation/Feasibility Study/De Fort Monmouth, Oceanport, Monmouth Co	
9	Contract Number:	W912DY-09-D-0062, Task Order 0012, Proj	ect No. 369857
10	Contractor:	Parsons Government Services, Inc.	
11	Period of Performanc	e: 30 September 2012 to 30 September 2017	· .
12	Date of Original:	July 2013	
13	Revision:	1	
14			
15		March 2015	
16	5 X		
17	Reviewed and Approve	d by:	· · · ·
18		Co M	(1)
19 20	Project Manager:	Chrispina Griff, P.G.	$\frac{3/18/15}{Date}$
21		IM A	. 1
22 23	Program Manager:	Don Silkebakken, V.P.	<u> </u>
24			

1		TABLE OF CONTENTS	
2	List of Tab	bles	ix
4		gures	
5	U	pendices	
6		ronyms	
0			
7		N 1 INTRODUCTION	
8	1.1	Project Authorization	
9	1.2	Purpose and Scope	
10	1.3	Work Plan Organization	
11	1.4	Project Location	
12	1.5	Site Description	
13	1.5		
14	1.5 1.5		
15 16	1.5		
10	1.5		
17	1.5		
10	1.5	Site History	
20	1.0	-	
20	1.6		
22	1.6		
22		5.4 FTMM-05	
24	1.6		
25	1.6		
26	1.6	5.7 FTMM-14	
27	1.6		
28	1.6	5.9 FTMM-25	
29	1.7	Current and Projected Land Use	
30	1.7		
31	1.7	7.2 FTMM-03	1-13
32	1.7	7.3 FTMM-04	

i

1	1.7.4	FTMM-05	3				
2	1.7.5	FTMM-08	3				
3	1.7.6	FTMM-12	3				
4	1.7.7 FTMM-14						
5	1.7.8	FTMM-18	3				
6	1.7.9	FTMM-25	4				
7	1.8 P	revious Investigations and Historical Data 1-1	4				
8	1.8.1	FTMM-02	4				
9	SECTION 2	TECHNICAL MANAGEMENT PLAN2-	1				
10	2.1 In	troduction2-	1				
11	2.2 P	roject Objective2-	1				
12	SECTION 3	INVESTIGATION PLAN	1				
13	3.1 C	onceptual Site Model	1				
14	3.2	eneral Technical Approach	4				
15	3.2.1	FTMM-2 Investigation Plan3-	4				
16	3.2.2	Data Quality Objectives	5				
17	3.2.3	Data Incorporation into RI/FS Reports	5				
18	3.3	eospatial Information, Digital Field Data Collection, and Electronic Submittals 3-	7				
19	3.3.1	Geospatial Information3-	7				
20	3.3.2	Digital Field Data Collection Methodology3-	7				
21	3.3.3	Electronic Submittals	7				
22	3.4 V	Vaste Management Plan	7				
23	3.5 R	isk Characterization and Analysis	7				
24	3.6 N	Iobilization/Demobilization	7				
25	3.6.1	Preparation	7				
26	3.6.2	Equipment Mobilization	7				
27	3.6.3	Right-of-Entry	8				
28	3.6.4	Communications	8				
29	3.6.5	Training and Briefing3-	8				
30	SECTION 4	QUALITY CONTROL PLAN4-	1				
31	4.1 C	eneral4-	1				
32	4.2 C	orporate Policy4-	1				

1	4.3	Ree	quirements	4-1					
2	4.4	Qu	ality Control Objectives						
3	4.5	Qu	ality Control for Instrument and Equipment Testing	4-3					
4	4.	5.1	Digital Camera Quality Control	4-3					
5	4.	5.2	Cell Phone Quality Control	4-3					
6	4.	5.3	Field Measurement Instrumentation Control	4-4					
7	4.6	Ins	trument/Equipment Maintenance	4-4					
8	4.7	Da	ta Management	4-4					
9	4.7	7.1	Data Reduction	4-4					
10	4.7	7.2	Field Data Storage	4-4					
11	4.7	7.3	Data Validation	4-4					
12	4.8	Fie	ld Operations Documentation	4-4					
13	4.8	8.1	Daily Field Activity Records	4-4					
14	4.9	No	nconforming Items Or Activities And Corrective Actions	4-4					
15	4.9	9.1	Identification	4-4					
16	4.9	9.2	Resolution, Corrective Action, and Verification	4-5					
17	4.9	9.3	Material and Item Nonconformance	4-5					
18	4.9	9.4	Review and Disposition of Nonconformance	4-5					
19	4.9	9.5	Trend Analysis and Root Cause Analysis	4-6					
20	4.9	9.6	Lessons Learned	4-6					
21	4.10	Au	dits and Surveillances	4-6					
22	4.	10.1	Audit Planning	4-6					
23	4.	10.2	Audit Execution	4-7					
24	4.	10.3	Audit Reporting	4-7					
25	4.	10.4	Review, Approval, and Verification of Recommended Action Response	4-7					
26	4.11	Qu	ality Control Reports	4-8					
27	4.12	Do	cuments and Submittals	4-8					
28	4.	12.1	Process	4-8					
29	4.	12.2	Review	4-8					
30	4.	12.3	Document Distribution and Retrieval	4-8					
31	4.13	Per	sonnel Selection	4-8					
32	4.14	Per	sonnel Qualifications and Training	4-9					
33	4.15	Ch	emical Data Quality Management Plan	4-9					

1	SECTION 5	ENVIRONMENTAL PROTECTION PLAN
2	5.1 In	troduction
3	5.2 Se	ensitive Resources
4	5.2.1	Threatened and Endangered Species5-1
5	5.2.2	Sensitive Environments
6	5.2.3	Cultural and Archaeological Resources5-1
7	5.2.4	Water Resources
8	5.2.5	Coastal Zones
9	5.2.6	Waste Disposal Sites
10	5.3 M	itigation Procedures
11	SECTION 6	PROPERTY MANAGEMENT PLAN6-1
12	SECTION 7	REFERENCES
13		
14		LIST OF TABLES
15 16	Table 3.1	Overview of Preliminary Conceptual Site Models and Supplemental Remedial Investigation Technical Approach, Fort Monmouth, New Jersey
17 18	Table 3.2	Data Quality Objective Statements for the Supplemental Remedial Investigation and Feasibility Study, Fort Monmouth, New Jersey
19		
20		LIST OF FIGURES
21	Figure 1.1	Fort Monmouth Location
22	Figure 1.2	Main Post Layout
23	Figure 1.3	Charles Wood Area Layout
24	Figure 3.1	Preliminary Conceptual Site Model Diagram for FTMM-02
25	Figure 3.2	Proposed RI Soil Borings at FTMM-02
26		LIST OF APPENDICES
27	Appendix A	Performance Work Statement (included by reference only)
28	Appendix A Appendix B	Field Forms (included by reference only)
29 30	Appendix B Appendix C	Historical Information
30 31	Appendix C Appendix D	Accident Prevention Plan (included by reference only)
32	Appendix E	Sampling and Analysis Plan (included by reference only)

r		
ACRONYM	DEFINITION	
°F	degrees Fahrenheit	
μg/L	micrograms per liter	
$\mu g/m^3$	micrograms per cubic meter	
AMC	U.S. Fort Monmouth Material Command	
amsl	above mean sea level	
ARAR	applicable or relevant and appropriate requirement	
AST	above-ground storage tanks	
BEE	baseline ecological evaluation	
bgs	below ground surface	
BRAC	Base Realignment and Closure	
BTEX	benzene, toluene, ethylbenzene, and xylenes	
C4ISR	Command and Control Communications, Computers, Intelligence, Sensors and Reconnaissance	
CD-ROM	compact disc	
CECOM	U.S. Fort Monmouth Communications and Electronics Command	
CENAE	U.S. Army Corps of Engineers New England District	
CENAN	U.S. Army Corps of Engineers New York District	
CERCLA Comprehensive Environmental Response, Compensation, and Liab		
CIP common installation picture		
CSDGM	Content Standards for Digital Geospatial Metadata	
CSM	conceptual site model	
CWA	Charles Wood Area	
COPC	Contaminants of potential concern	
COPEC	chemical of potential ecological concern	
CZMP	Coastal Zone Management Program	
DCE	Dichloroethene	
DID	data item description	
DNAPL	dense non-aqueous phase liquid	
DO	dissolved oxygen	
DoD	Department of Defense	
DPW	Department of Public Works	
DQO	data quality objective	
DVD-ROM	digital video disc	
EA	Evans Area	
ECP	Environmental Condition of Property	

LIST OF ACRONYMS

ACRONYM	DEFINITION					
EM	engineering manual					
ELAP	Environmental Laboratory Accreditation Program					
EPH	extractable petroleum hydrocarbons					
EPP	Environmental Protection Plan					
ERPIMS	Environmental Resources Program Information Management System					
ESC	ecological screening criteria					
ESRI	Environmental Systems Research Institute					
FFP	firm fixed price					
FGDC	Federal Geographic Data Committee					
FS	feasibility study					
ft/day	feet per day					
ft/ft	foot per foot					
FMERA	Fort Monmouth Economic Revitalization Authority					
FTMM	Fort Monmouth					
GC/MS	gas chromatography/mass spectroscopy					
GES	Groundwater & Environmental Services, Inc.					
GFP	government-furnished property					
GIS	geographic information system					
gpm	gallons per minute					
GPS	global positioning system					
GWQS	Ground Water Quality Standard(s)					
GWSL	Ground Water Screening Level(s)					
HHRA	human health risk assessment					
HTRW	hazardous, toxic, and radiological waste					
IASLs	indoor air screening levels					
IDW	investigation-derived waste					
IRP	Installation Restoration Program					
ISCO	in-situ chemical oxidation					
LNAPL	light non-aqueous phase liquid					
MDS Mission Data Set						
mg/kg	milligrams per kilogram					
MNA	monitored natural attenuation					
MP	Main Post					
NAD83	North American Datum 1983					
NCP	National Contingency Plan					
NCR	nonconformance report					

ACRONYM	DEFINITION				
NJAC	New Jersey Administrative Code				
NJDEP	New Jersey Department of Environmental Protection				
ORP	oxidation-reduction potential				
РАН	polycyclic aromatic hydrocarbon				
PCE	Tetrachloroethene				
PDA	personal digital assistant				
PDF	portable document format				
PID	photoionization detector				
PgM	program manager				
PM	project manager				
PMP	Project Management Plan				
POC	point of contact				
PP	priority pollutant(s)				
PPE	personal protective equipment				
PWS	Performance Work Statement				
QA	quality assurance				
QASP	Quality Assurance Surveillance Plan				
QC	quality control				
QCP	Quality Control Plan				
R&D	research and development				
RAGS	Risk Assessment Guidance for Superfund				
RAO	remedial action objective				
RAPR	Remedial Action Progress Report				
RAWP	Remedial Action Work Plan				
RCRA	Resource Conservation and Recovery Act				
RCWM	recovered chemical warfare materiel				
RDBMS	Relational Database Management System				
RDCSRS	Residential Direct Contact Soil Remediation Standard				
RI/FS	remedial investigation/feasibility study				
SAP	Sampling and Analysis Plan				
SDSFIE	Spatial Data Standards for Facilities Infrastructure and Environment				
SGSL	soil gas screening level				
SI	site investigation				
SSHO	Site Safety and Health Officer				
SHSP	Site Health and Safety Plan				
SVE	soil vapor extraction				

ACRONYM	DEFINITION			
SVOCs	semi-volatile organic compounds			
TAL	target analyte list			
TBA	tert-butyl alcohol			
TCE	Trichloroethene			
TCL	target compound list			
TICs	tentatively identified compounds			
TPH	total petroleum hydrocarbons			
UFP-QAPP	Uniform Federal Policy-Quality Assurance Project Plan			
USACE	U.S. Army Corps of Engineers			
USAEHA	U.S. Army Environmental Hygiene Agency			
USAESCH	U.S. Army Engineering and Support Center, Huntsville			
USDA	U.S. Department of Agriculture			
USEPA	U.S. Environmental Protection Agency			
USFWS	U.S. Fish and Wildlife Service			
UST	underground storage tank			
VI	vapor intrusion			
VOC	volatile organic compounds			

SECTION 1 INTRODUCTION

3 1.1 PROJECT AUTHORIZATION

1.1.1 Parsons Government Services Inc. (Parsons) is serving as the prime contractor to
the U.S. Army Engineering and Support Center, Huntsville (USAESCH) for the performance of
a Remedial Investigation/Feasibility Study (RI/FS) to achieve acceptance of Decision
Documents (DD) at the Fort Monmouth (FTMM) site in Oceanport, Monmouth County, New
Jersey. This project is being performed under task order (TO) 0012 issued under the Worldwide
Environmental Restoration Services (WERS) contract number W912DY-09-D-0062.

10 1.1.2 This TO was issued to address a number of environmental sites at FTMM that are in various stages of hazardous, toxic, and radiological waste (HTRW) investigation and 11 remediation. Specific activities that will be performed under this delivery order include 1) 12 performance of a remedial investigation (RI) and feasibility studies (FS) to achieve acceptance of 13 14 DDs in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the National Contingency Plan (NCP), 40 CFR Part 300 and to the 15 extent possible to meet the requirements of New Jersey Administrative Code (NJAC) 7:26 E 16 Technical Requirements for Site Remediation, and 2) supporting the closure of environmental 17 18 sites, excluding the landfill sites to facilitate the efficient transfer of real property to other parties.

This work plan, which describes RI/FS activities to be performed at nine landfill 19 1.1.3 20 sites designated as FTMM-02, FTMM-03, FTMM-04, FTMM-05, FTMM-08, FTMM-12, FTMM-14, FTMM-18 and FTMM-25, is to be executed in accordance with the Performance 21 Work Statement (PWS) dated 30 August 2011 (Appendix A, included by reference only). 22 23 Parsons will coordinate this effort with USAESCH, U.S. Army Corps of Engineers, New York 24 District (CENAN), U.S. Army Corps of Engineers, New England District (CENAE), and FTMM. Project roles and responsibilities are outlined in the Project Management Plan (PMP) 25 (Parsons, 2012a). (U.S. Army Corps of Engineers [USACE] is defined as USAESCH, CENAN, 26 CENAE.) 27

28 1.2 PURPOSE AND SCOPE

Parsons will perform RI/FS activities for FTMM-02, FTMM-03, FTMM-04, 29 1.2.1 FTMM-05, FTMM-08, FTMM-12, FTMM-14, FTMM-18 and FTMM-25 at FTMM. Extensive 30 RI characterization and RI documents have already been completed for the nine sites. The 31 32 supplemental RI activities will be limited to FTMM-02. Additional soil characterization may be required specifically along the former railroad track alignment south of the site to delineate the 33 landfill. The RIs for the eight remaining landfill sites are complete and will be moving directly 34 into the evaluation of the human health risk assessment (HHRA) and FS phases. After 35 completion of the RI at FTMM-02, the HHRA and FS phases for this landfill will be prepared. 36 Supporting plans, including the Accident Prevention Plan (APP), which contains the Site Health 37 and Safety Plan (SHSP), and Sampling and Analysis Plan (SAP) have been prepared separately 38 as stand-alone documents and are included in this work plan by reference only. 39

1.2.2 The work plan is a living document and may be updated via slip pages if warranted. Once this work plan is approved for implementation, a dated summary page listing

14

15

16

17

18

19

36

37

38

1 revised pages will be used to document associated changes and will be included with each 2 revision.

1.2.3 The primary objective and purpose of the RI/FS stage is to safely characterize 3 contamination, identify and quantify associated risk(s), and provide documentation supporting 4 necessary response action planning. Following completion of the RI activities, site-specific 5 RI/FS reports will be produced that incorporate any new RI data collected as part of this TO 6 (FTMM-02 only), evaluate risks posed by site-related contamination, evaluate remedial 7 alternatives, and document the recommended remedial alternative. The overall goal of this 8 9 process is to obtain New Jersey Department of Environmental Protection (NJDEP) concurrence on a final RI/FS report for each site, and if appropriate, provide sufficient data to facilitate the 10 11 future remedial action. The objective of the RI/FS portion of this project will be met when the following tasks have been accomplished: 12

- A work plan has been prepared in accordance with the PWS that references governing regulations and requirements, identifies appropriate activities for the RI, and defines and presents an effective approach to the planning and implementation of these activities that will meet the requirements of the RI/FS; and
- A RI is completed that is sufficient to characterize the nature and extent of potential contamination risks and support a FS for remedial action that identifies at least one appropriate, applicable, cost-effective, implementable remedy.
- 20 **1.3 WORK PLAN ORGANIZATION**

1.3.1 The work plan is organized to be compliant with relevant portions of Data Item
Description (DID) WERS-001.01 (Explosives Management Plan, Interim Holding Facility Siting
Plan for Recovered Chemical Warfare Materiel (RCWM) Projects, and Physical Security Plan
for RCWM Project Sites). The work plan comprises several sub plans, each discussing a
different aspect of the RI/FS and is summarized below. Sections 5, 8, and 9 of WERS-001.01
are not applicable to this project, and therefore are not included in this work plan.

- Introduction: Section 1 details the overall scope and objective of the project, presents the organization of the work plan, and presents an overview of the site and its history for the nine landfills, and previous investigations and historical data for FTMM-02.
 Previous investigations and historical data for the other eight landfills will be presented in the RI/FS report for each site;
- <u>Technical Management Plan</u>: Section 2 details the organizational structure, lines of authority, and communication of the project team. Given that much of the information in this chapter is also included in the PMP prepared under separate cover, the PMP is referenced where appropriate to avoid duplication of effort;
 - <u>Investigation Plan</u>: Section 3 describes the specific RI activities planned for FTMM-02, the approach to risk characterization and analysis, and evaluation of remedial technologies and alternatives;
- Quality Control Plan (QCP): Section 4 describes Parsons' procedures for controlling
 and measuring the quality of work performed, including the organization,
 responsibilities, and policies. Additional information is included in the Uniform

2

16

17

18

Federal Policy-Quality Assurance Project Plan (UFP-QAPP) prepared as part of the SAP and included by reference as **Appendix E**;

• <u>Environmental Protection Plan (EPP)</u>: Section 5 describes the procedures and methods to be implemented to minimize pollution; protect and conserve natural, cultural, archaeological, and water resources; restore damage; and control noise and dust within reasonable limits;

- Property Management Plan (PMP): Section 6 describes how Parsons will manage
 Government Furnished Property (GFP); and
- 9 <u>References</u>: Section 7 includes a list of references used in the preparation of this 10 work plan.

11 **1.3.2** Additional information is attached to this work plan as appendices (some of which 12 are included by reference as indicated below):

- **Appendix A** Performance Work Statement (included by reference only);
- Appendix B Field Forms: Relevant field forms that will be used by the sampling team are provided in the SAP Appendix B (included by reference only);
 - **Appendix C** Historical Information: Selected tables and figures from historical reports that illustrate previously-collected site characterization information;
 - Appendix D APP (included by reference only); and
- **Appendix E** SAP (included by reference only).

20 **1.4 PROJECT LOCATION**

Fort Monmouth is located in the central-eastern portion of New Jersey in Monmouth County, approximately 45 miles south of New York City, New York, 70 miles northeast of Philadelphia, Pennsylvania, and 40 miles east of Trenton, New Jersey. The Atlantic Ocean is approximately 3 miles to the east. The location of FTMM and the nine landfill sites discussed in this work plan are shown on **Figures 1.1 through 1.3**.

26**1.5SITE DESCRIPTION**

27 **1.5.1 Site Location**

1.5.1.1 FTMM occupies approximately 1,126 acres and was comprised of two areas, including the Main Post (MP) and the Charles Wood Area (CWA). The EA was located approximately 8 miles to the south of the MP and CWA and was formerly used for administrative, research and development (R&D), and some training. FTMM falls within the Boroughs of Eatontown, Oceanport, and Tinton Falls. The 637-acre MP is located in the Eatontown and Oceanport Boroughs. The 489-acre CWA is located in the Eatontown and Tinton Falls Boroughs.

1.5.1.2 FTMM-02, also known as the M-2 Landfill Site, is located at the southwest corner of the MP, south of and adjacent to Mill Creek which flows eastward into Parkers Creek. The landfill is bounded to the north by Mill Creek, to the east by Building 1122, to the west by an open grassed area, and to the south by an abandoned railroad track bed. The approximate area of the M-2 Landfill Site is approximately 6.5 acres. The location of the M-2 Landfill Site is shown on Figure 1.2. The M-2 Landfill Site currently supports vegetative growth and (i.e., grass, trees,
 brush) adjoins Mill Creek to the north (Versar, 2001).

1.5.1.3 FTMM-03, also known as the M-3 Landfill Site, is located between North Drive and Lafetra Creek in the west-central portion of the MP. Lafetra Creek flows along the northern perimeter of the M-3 Landfill Site for a distance of approximately 1,200 feet. The approximate area of the M-3 Landfill Site is approximately 8.0 acres. The location of the M-3 Landfill Site is shown on **Figure 1.2**.

8 1.5.1.4 FTMM-04, also known as the M-4 Landfill Site, is located in the MP Area and 9 bounded by the Avenue of Memories to the south, North Drive to the north, Mill Creek to the 10 west, and Wilson Avenue to the east. An approximate 360 foot section of Mill Creek flows 11 along the western perimeter of the landfill and has reinforced concrete plates which are covered 12 with grass, various plants and bramble. The approximate size of the M-4 Landfill Site is 61,800 13 square feet (1.4 acres). The location of the M-4 Landfill Site is shown on **Figure 1.2**.

14 1.5.1.5 FTMM-05, also known as M-5 Landfill Site, is located in the western portion of 15 the MP, north of the M-4 Landfill Site and south of the M-8 Landfill Site. The M-5 Landfill Site 16 is bounded to the south by North Drive, to the north by an unpaved road, Wilson Avenue to the 17 east and Mill Creek and Parkers Creek to the west. A portion of Mills Creek is adjacent to the 18 bounds of the western side of the site. The approximate size of the M-5 Landfill Site is 138,200 19 square feet (3.2 acres). The location of the M-5 Landfill Site is shown on **Figure 1.2**.

1.5.1.6 FTMM-08, also known as the M-8 Landfill Site, is located on the north-central
portion of the MP, north of Buildings T-692 and S-697 and south of and adjacent to Parkers
Creek. The M-5 Landfill Site is adjacent to the southern boundary of the M-8 Landfill Site. The
approximate size of the M-8 Landfill Site is 315,000 square feet (7.2 acres). The location of the
M-8 Landfill Site is shown on Figure 1.2.

1.5.1.7 FTMM-12, also known as the M-12 Landfill Site, is located on the central portion
of the MP, south and adjacent to Husky Brook, and west of Murphy Drive. The M-12 Landfill
Site is approximately 7.1 acres. The location of the M-12 Landfill Site is shown on Figure 1.2.

1.5.1.8 FTMM-14, also known as the M-14 Landfill Site, is located on the MP, on the
north bank of Husky Brook, and west of Murphy Drive. The approximate size of the M-14
Landfill Site is 300,000 square feet (6.9 acres). The location of the M-14 Landfill Site is shown
on Figure 1.2.

1.5.1.9 FTMM-18, also known as the M-18 Landfill Site, is located on the northern part
 of the MP, between Parkers Creek to the north and Buildings 283, T-294, T-293, S-289 and
 Sherrill Avenue to the south. The size of the M-18 Landfill Site area is approximately 4.85
 acres. The location of the M-18 Landfill Site is shown on Figure 1.2.

1.5.1.10 FTMM-25, also known as the CW-3A Landfill Site, is located in the CWA. The CW-3A Landfill Site is bounded by Pearl Harbor Avenue to the west, Shrewsbury Creek to the north, a wooded area to the east and the Pulse Power Facility (Building 2707) to the south. The Shrewsbury Creek abuts the northern boundary of the CW-3A Landfill Site for approximately 600 feet. The CW-3A Landfill Site currently consists of a partially wooded lot with tall grass to the center and trees to the north, east and west. The size of the CW-3A Landfill Site is approximately 3.1 acres. The location of the CW-3A Landfill Site is shown on Figure 1.3. 1 **1.5.2** Physiography, Topography and Vegetation

1.5.2.1 Both the MP and CWA are located within New Jersey's Coastal Plains
Physiographic Province, which is described as gently dipping to the southeast. The Coastal
Plains Physiographic Province is characterized by sedimentary beds dissected by meandering
rivers that drain to the Raritan or Delaware River. The topography of the installation is relatively
flat, and has an elevation of 20 to 25 feet above mean sea level (amsl) (AECOM, 2012).

1.5.2.2 Major vegetation zones at FTMM consist of landscaped areas, estuarine and fresh
 water wetlands, riparian areas, upland forests, and old field habitats (Shaw, 2011). Much of the
 upland areas of the MP and CWA consist of extensive areas of regularly mowed lawns and
 landscaped areas. The vegetation information summarized in the following paragraphs is
 primarily from the Baseline Ecological Evaluation Report (Shaw, 2011).

12 1.5.2.3 Areas of wetlands are present on both the MP and CWA. Estuarine wetlands on the MP are associated with the tidal brackish waters of Parkers and Oceanport Creeks. Where 13 14 present on the MP, estuarine wetlands are dominated by common reed. Fresh water wetlands occur on both the MP and CWA. The most extensive of these are forested wetlands, with areas 15 16 of emergent wetlands associated with the fresh water portions of the several creeks that traverse the MP and CWA. Forested wetlands in the area are typically dominated by red maple (Acer 17 rubrum) and other hardwoods, including sweetgum (Liquidambar styraciflua), and black gum 18 Shrubs/vines include arrowwood (Viburnum dentatum), coastal sweet 19 (Nyssa sylvatica). pepperbush (Clethra alnifolia), and greenbrier (Smilax rotundifolia). Herbaceous species found 20 in these forested wetlands include smartweed (*Polygonum sp.*), jewelweed (*Impatiens capensis*), 21 22 violets (Viola sp.), asters, sedges and ferns. Fresh water emergent vegetation includes cattail 23 (Typha latifolia), water smartweed (Polygonum amphibium), arrowhead (Sagittaria sp.), pondweed (Potamogeton sp.), sedges, and rushes. 24

1.5.2.4 In many areas of the MP, steep banks along the creeks limit the extent of the
 riparian zone and thereby prevent the formation of extensive wetlands. These areas have a
 narrow riparian zone dominated by marsh elder, also known as high-tide bush.

1.5.2.5 Although most upland areas of the MP and CWA are developed, patches of
upland forest are present in several areas. Dominant tree species include red oak (*Quercus rubra*), chestnut oak (*Quercus prinus*), tuliptree (*Liriodendron tulipifera*), and sweetgum
(*Liquidambar styraciflua*). Understory species include sassafras (*Sassafras albidum*), flowering
dogwood (*Cornus florida*), and black cherry (*Prunus serotina*).

1.5.2.6 Old field habitats include formerly mowed areas where the vegetation includes
 grasses, forbes and often immature trees. Old field habitats at the MP include grasses, many
 forbes including Queen Ann's lace (*Daucus carota*), pokeweed (*Phytolacca americana*),
 goldenrod (*Solidago sp.*), milkweed (*Asclepias syriaca*), and sparse saplings of tree species
 including eastern red cedar (*Juniperus virginiana*) and winged sumac (*Rhus copallinum*).

38 **1.5.2.7 FTMM-02**

1.5.2.7.1 The vegetative cover at the M-2 Landfill Site is mostly cut field with isolated
 areas of wood shrub habitat. Habitats along Mill Creek are comprised of silver maple (*Acer saccharinum*), viburnum (*Viburnum* sp.), smartwood (*Polygon* sp.), and blackgum (*Nyssa sylvatica*). The upland portions of the M-2 Landfill Site contain black walnut (*juglans nigra*),

silver maple, boxwood (*Buxus* sp.), catalpa (*Catalpa speciosa*), and black locust (*Robinia pseuocacia*) (Shaw, 2012).

1.5.2.7.2 Geographic Information Systems (GIS) digital data available through the NJDEP
 indicate the presence of deciduous wetlands along Mill Creek and to the east and west of the M-2
 Landfill Site and herbaceous wetlands across the site. Previous site visits confirmed the presence
 of deciduous wetlands bordering Mill Creek and the M-2 Landfill Site; however the site was
 typical of upland habitat and not herbaceous wetlands (Shaw, 2012).

8 1.5.3 Climate

9 The climate in the Fort Monmouth area is typically humid subtropical and is impacted by continental and oceanic influences. The proximity of the Atlantic Ocean tends to minimize 10 seasonal temperature fluctuations as compared to interior regions of the state. Based on data 11 12 obtained from the National Weather Service, the temperature at Fort Monmouth ranges from 20 degrees Fahrenheit (°F) to 90°F (average of 57°F), and precipitation averages 42 inches per year. 13 Winter is typically cold with occasional Nor'easters, resulting in rain along the coast; springs are 14 mild, with the average temperature in the 50s and common thunderstorms; summers are hot and 15 16 humid, with rare hurricanes; and autumns are similar to spring in terms of temperature and precipitation, although unpredictable weather is common (AECOM, 2012). 17

18 **1.5.4 Geology and Hydrogeology**

1.5.4.0.1 The MP and CWA are situated on Coastal Plain deposits that thicken to the 19 20 southeast. Versar (2005) states that more than 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers 21 (e.g., Englishtown and Kirkwood Formations and the Cohansev Sand), while the transgressive 22 deposits act as confining units (e.g., the Merchantville, Marshalltown and Navesink Formations). 23 24 The individual thickness for these units varies greatly from several feet to several hundred feet. A regional geologic cross-section for the FTMM vicinity is provided in Appendix C. This 25 cross-section was obtained from a RI report for FTMM-59 prepared by Versar (2005). This 26 cross-section indicated that the depth to bedrock at FTMM is approximately 1,000 feet and 27 28 therefore is not a geologic unit of concern at FTMM.

1.5.4.0.2 Based on a regional geologic map prepared by Jablonski (1968) and presented in 29 30 Versar (2005), the Cretaceous Age Red Bank and Tinton Sands (both unconsolidated) outcrop at The Red Bank Sand conformably overlies the unconsolidated Navesink the Main Post. 31 Formation and dips to the southeast at 35 feet per mile. The upper member (Shrewsbury) of the 32 Red Bank Sand is a yellowish-gray to reddish brown clayey, medium-to-coarse-grained sand that 33 contains abundant rock fragments, minor mica and glauconite. The lower member (Sandy Hook) 34 is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite 35 (Versar, 2005). 36

1.5.4.0.3 The Tinton Sand conformably overlies the Red Bank Sand and ranges from a clayey, medium to very coarse-grained, feldspathic-quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish-orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit. The upper part of the Tinton Sand is often highly oxidized and iron oxide encrusted (Versar, 2005).

1.5.4.0.4 The water table aquifer in the MP area is identified as part of the "Navesink-1 Hornerstown Confining Units," or minor aquifers. The minor aquifers include the Navesink 2 Formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, 3 Manasquan Formation, Shark River Formation, Piney Point Formation and the basal clay of the 4 Kirkwood Formation. These geologic formations comprise a "Composite Confining Bed" for the 5 underlying Wenonah Mount Laurel Aquifer (Zapecza, 1984 as reported by Versar, 2005) (see 6 regional geologic cross-section in Appendix C). Wells installed in the Red Bank and Tinton 7 Sands produce 2 to 25 gallons per minute (gpm) (Jablonski, 1968). The shallow water table 8 9 conditions in the Tinton and Red Bank Sands, and the similar composition of these sands within the Kirkwood Formation, suggest that the Tinton-Red Bank-Kirkwood sequence forms a single. 10 laterally continuous aquifer. Groundwater in this water table aquifer flows east towards the 11 Atlantic Ocean. However, local topography tends to deflect the flow toward local depressions 12 (Versar, 2005). 13

1.5.4.0.5 Groundwater is typically encountered at the MP and in the surrounding areas at 14 shallow depths (2 to 9 feet bgs); groundwater elevations fluctuate with the tidal action in area 15 creeks (AECOM, 2012). A pumping test performed at FTMM in 1992 yielded a hydraulic 16 conductivity of 32 gallons per day per square foot (4.3 feet per day [ft/day]) (Groundwater & 17 Environmental Services, Inc. [GES] 1999). The location of the pumping test and the geologic 18 unit tested are not known. Additional hydraulic conductivity information for the MP area is 19 provided in Appendix IV of the MODFLOW Groundwater Modeling report prepared by 20 Brinkerhoff Environmental Services, Inc. (Brinkerhoff, 2010). A table summarizing this 21 22 additional hydraulic conductivity information is provided in **Appendix C**. Twenty-one hydraulic conductivity values derived from slug tests performed in monitoring wells installed at various 23 building areas ranged from 0.3 ft/day to 31.7 ft/day with an average value of 5.3 ft/day. 24

1.5.4.0.6 Shallow groundwater in the MP area is locally influenced by the following factors
 (GES, 1999):

27

29

30

31

• Tides (based on proximity to the Atlantic Ocean, rivers and tributaries);

- Topography;
 - Nature of the fill material within the MP area;
 - Presence of clay and silt lenses in the natural overburden deposits; and
 - Local groundwater recharge areas (e.g., streams, lakes).

Due to the fluvial nature of the overburden deposits (e.g., sand and clay lenses), GES (1999) concluded that shallow groundwater flow direction is best determined on a case-by-case basis.

1.5.4.0.7 NJAC 7:9-6, Groundwater Quality Standards (GWQS), establishes groundwater quality criteria for different classes of groundwater. Class II-A, which is defined as all groundwater that is not classified as one of the other special classes, is the appropriate class for groundwater at Fort Monmouth. The primary designated use for Class II-A groundwater is potable water; secondary uses include agricultural and industrial water.

1.5.4.0.8 The chemistry of the groundwater near the surface is variable with low dissolved
 solids and high iron concentrations. The water chemistry in areas underlain by glauconitic
 sediments (such as Red Bank and Tinton Sands) is dominated by calcium, magnesium, and iron
 (Shaw, 2011). Glauconitic soils, such as those present in the Cretaceous Age Red Bank and

1 Tinton Sands of the FTMM area, can exhibit high concentrations of naturally occurring metals 2 such as arsenic, beryllium, and lead (Dooley, 2001), and the upper part of the Tinton Sand is 3 often highly iron-oxide encrusted.

4 **1.5.4.1 FTMM-02**

1.5.4.1.1 Site lithology for the M-2 Landfill Site reportedly consists of a thin soil cover
(approximately 0.2 feet), underlain by fill material (Versar, 2001). The thickness of the fill
ranges between 2 feet and 20 feet thick where encountered, with an average thickness of 9 feet
and generally consists of organic debris and coal fragments intermixed with sand, silt and clay.
Naturally occurring silty sand was encountered underlying the fill (Versar, 2001).

1.5.4.1.2 Groundwater was observed at a depth of approximately 8 feet below ground
surface (bgs) across the site (Versar, 2004). Water level elevations collected during previous
investigations indicate that the local groundwater flow is towards Mill Creek. The U.S.
Geological Society (USGS) topographic map shows that the land surface of the M-2 Landfill Site
is relatively flat at an elevation of less than 20 feet amsl (Versar, 2004).

15 **1.5.4.2 FTMM-03**

16 1.5.4.2.1 Site lithology for the M-3 Landfill Site reportedly consists of a thin soil cover 17 (approximately 0.3 feet), underlain by fill material consisting of organic debris and slag 18 intermixed with gravel, sand, silt and clay. Naturally occurring sand and silty clay were 19 encountered underlying the fill at depths ranging from 1 to 2 feet bgs (Versar, 2004).

1.5.4.2.2 Groundwater was observed at depths ranging from approximately 2 to 12 feet bgs
 across the M-3 Landfill Site (Versar, 2004). Water level elevations collected during previous
 investigations indicate that local groundwater flow is to the north towards Lafetra Creek. USGS
 topographic maps show that the land surface of the site is relatively flat at an elevation of less
 than 20 feet amsl (Versar, 2004).

25 **1.5.4.3 FTMM-04**

1.5.4.3.1 Site lithology at the M-4 Landfill Site reportedly consists of a 0.4-foot thick soil
 cover overlaying fill material which generally consists of sand, silt, crushed concrete, gravel and
 organic matter (Versar, 2004). Naturally occurring sand and silty clay was encountered
 underlying the fill material at a depth of 18 feet bgs (Versar, 2005).

1.5.4.3.2 Groundwater was encountered at depths ranging from 5 to 10 feet bgs at the M-4 30 Landfill Site. The groundwater underlying the M-4 Landfill Site appears to be flowing in a 31 westerly direction, towards Mill Creek. USGS topographic maps show that the land surface of 32 33 the site is relatively flat at an elevation of less than 20 feet amsl (Versar, 2005). The M-4 Landfill Site is located within the Navesink-Hornerstown confining unit aquitard. The thickness 34 and low hydraulic conductivity of the aquitard at the M-4 Landfill Site is classified as a Class III-35 A aquifer in accordance with NJDEP GWQS (NJAC 7:9-6, January 7, 1993). While the FTMM-36 37 04 landfill is located within the horizontal limits of the Hornerstown Formation (an aquitard with a Class-III-A designation as defined in N.J.A.C. 7:9C-1.5([f]), the groundwater criteria for the 38 Hornerstown Formation under FTMM are the Class II-A Ground Water Quality Criteria. If 39 additional investigation work is performed to demonstrate that the criteria in N.J.A.C. 7:9C-40 1.7(e) are met, groundwater standards may be based on the Class III-A narrative standards. 41

1 **1.5.4.4 FTMM-05**

1.5.4.4.1 Site lithology at the M-5 Landfill Site reportedly consists of a thin soil cover
 (approximately 0.5 feet) underlain by fill material (Versar, 2004). The fill materials observed
 consisted of coal, glass and plastic fragments intermixed with a silty sand and clay matrix
 (Versar, 2004).

1.5.4.4.2 Groundwater was observed at depths ranging from 2 to 10 feet bgs at the M-5
Landfill Site. Water-level elevation data collected indicated that local groundwater flow is to the
west, towards Mill Creek (Versar, 2004). USGS topographic maps show that the land surface of
the M-5 Landfill Site is relatively flat at an elevation of less than 20 feet amsl.

10 **1.5.4.5 FTMM-08**

11 1.5.4.5.1 Site lithology at the M-8 Landfill Site reportedly consists of a thin soil cover 12 (approximately 0.4 feet), overlaying fill material. The fill material consists of wood, glass and 13 wire fragments intermixed with silty sand and clay (Versar, 2004).

14 1.5.4.5.2 Groundwater was observed at depths ranging from approximately 2 to 8 feet bgs 15 across the M-8 Landfill Site. Water-level elevation data collected indicated that local 16 groundwater flow is to the north, toward Parkers Creek (Versar, 2004). USGS topographic maps 17 show that the land surface of the M-8 Landfill Site is relatively flat at an elevation of less than 20 18 feet amsl (Versar, 2004).

19 **1.5.4.6 FTMM-12**

1.5.4.6.1 Site lithology at the M-12 Landfill Site reportedly consists of fill material, fine sand, silt and clay. The fill materials consisted of organic debris and coal fragments intermixed with a moderately to poorly sorted olive-green-brown, silty, medium to fine grained sand with clay lenses (Versar, 2003). Naturally occurring sand silt and clay was encountered below the fill at depths ranging between 4 to 10 feet bgs (Versar, 2003).

1.5.4.6.2 The groundwater underlying the M-12 Landfill Site appears to be flowing to the
 northwest into Husky Brook (Versar, 2003). USGS topographic maps show that the land surface
 of the M-12 Landfill Site is relatively flat at an elevation of less than 20 feet amsl (Versar, 2003).

28 **1.5.4.7 FTMM-14**

1.5.4.7.1 Site lithology at the M-14 Landfill Site reportedly consists of a thin soil cover (0.4
 feet) underlain by fill material. The fill materials include concrete rubble, charcoal, wood and
 glass fragments intermixed with greenish-gray silty, coarse to fine sand with little clay and
 gravel (Versar, 2005).

1.5.4.7.2 Groundwater was observed at depths ranging between approximately 2 to 12 feet
 bgs) across the M-14 Landfill Site. Water-level elevation data collected indicated that the local
 groundwater flow is to the south toward Husky Brook (Versar, 2005). USGS topographic maps
 show that the land surface of the M-14 Landfill Site is relatively flat at an elevation of less than
 20 feet amsl.

38 **1.5.4.8 FTMM-18**

1.5.4.8.1 Site lithology at the M-18 Landfill Site consists of asphalt, wood fragments and
 roof shingles intermixed with poorly sorted gray-olive brown, silty fine-coarse-grained sand with

trace amounts of clay (Versar, 2004). Surface water runoff from the M-18 Landfill Site is likely
 to flow northward into Parkers Creek.

1.5.4.8.2 Groundwater was observed at depths ranging between approximately 3.5 to 7 feet
 bgs. USGS topographic maps show that the land surface of the M-18 Landfill Site is relatively
 flat at an elevation of less than 20 feet amsl.

6 **1.5.4.9 FTMM-25**

1.5.4.9.1 Soil lithology at the CW-3A Landfill Site consists of a thin soil cover (0.4 feet)
underlain by alternating layers of reworked sand, silt and broken concrete gravel pieces with
interbedded plant/root fragments (Versar, 2005).

1.5.4.9.2 Groundwater saturation was observed at depths ranging between 6 to 12 feet bgs.
 The groundwater flow in the vicinity of the CW-3A Landfill Site is assumed to be north towards
 Shrewsbury Creek. USGS topographic maps show that the land surface at the CW-3A Landfill
 Site is relatively flat at an elevation of 30 to 60 feet amsl.

14 **1.5.5 Site Soil**

According to the Monmouth County Soil Survey (U.S. Department of Agriculture [USDA], 2008), much of the MP is covered by urban, developed land with disturbed soils, whereas the CWA is covered by less urban land complexes than the MP (Shaw, 2011). Surface soils in the vicinity of the MP and CWA generally consist of sandy loams ranging in depth from 9 to 12 inches. The surface soils are underlain by sandy loam, sandy clay loam, or loam that may grade to loamy sand at a depth of approximately 5 feet bgs. Some areas at the MP and CWA are covered by impermeable surfaces such as roads, parking lots, and buildings (AECOM, 2012).

22 **1.5.6 Hydrology**

1.5.6.1 The northeastern and southeastern portions of the MP are bordered by Parkers
Creek and Oceanport Creek, respectively, and the southern portion of the MP is bordered by
Husky Brook. The Shrewsbury River is located within one mile to the east of the MP. Wampum
Brook is located to the south of the CWA, and Shrewsbury Creek traverses the CWA from west
to east. Shrewsbury Creek and Wampum Brook merge approximately 300 feet east of the CWA
to form Mill Creek. No other surface water bodies were identified within one mile of the CWA
(AECOM, 2012).

30 1.5.6.2 Identified surface water bodies ultimately drain into the Shrewsbury Bay, situated adjacent to the eastern edge of the MP. Shrewsbury Bay is separated from the Atlantic Ocean by 31 a barrier island. However, channels through the barrier island ensure hydraulic connection 32 between Shrewsbury Bay and the Atlantic Ocean. As a result, the water in Shrewsbury Bay is 33 tidally-influenced and is brackish to saline. Water in the tributary streams to Shrewsbury Bay is 34 also tidally-influenced, and is fresh water to brackish at low tide and brackish to saline at high 35 tide. Stormwater at FTMM drains to municipal drainage systems via overland flow (AECOM, 36 37 2012).

38 1.5.6.3 The U.S. Fish and Wildlife Service (USFWS) National Wetland Inventory 39 indicates the presence of wetlands at the MP. Parkers and Oceanport Creeks are classified as 40 estuarine and marine deepwater with estuarine and marine wetland areas. Husky Brook and 41 Lafetra Creek are classified predominantly as fresh water riverine, emergent wetland, and 42 forested/shrub wetland. Husky Brook Lake is classified as a fresh water pond. Several CWA wetland areas are identified on the USFWS National Wetland Inventory. Most of Shrewsbury
 Creek and Wampum Brook are classified as fresh water forested/shrub wetland, and the open
 water in the golf course in the eastern portion of the CWA is classified as a fresh water pond
 (Shaw, 2011).

5 **1.6 SITE HISTORY**

1.6.0.1 The MP of FTMM was established in 1917 as Camp Little Silver. The name of
the Camp was changed after three months to Camp Alfred Vail. The initial mission of the Camp
was to train Signal Corps operators for service in World War I. After the war, Camp Vail was
designated as the site of the Signal Corps School. In 1925, the facility became a permanent post,
and its name was changed to Fort Monmouth.

11 1.6.0.2 Camp Charles Wood was purchased in 1941 and opened in 1942. The eastern half 12 of the property was formerly a golf course, and the western half was residential property and 13 farmland. During World War II, the Camp was used for training Signal Corpsmen. A R&D 14 facility, the Myer Center (Building 2700), was completed in 1954. Laboratories within the Myer 15 Center facility developed state-of-the-art electronic and communications equipment for use by 16 the U.S. Armed Forces.

1.6.0.3 The primary mission of FTMM was to provide command, administrative, and 17 18 logistical support for Headquarters, U.S. Fort Monmouth Communications and Electronics Command (CECOM). CECOM is a major subordinate command of the U.S. Fort Monmouth 19 Material Command (AMC) and was the host activity. Fort Monmouth was the center for the 20 development of the Fort Monmouth's Command and Control Communications, Computers, 21 Intelligence, Sensors and Reconnaissance (C4ISR) systems, formerly the primary tenants of the 22 Fort. FTMM has a long history of research and development activity, mostly related to 23 communications and electronic equipment. For the completion of these research activities, 24 25 FTMM has operated a variety of laboratories. Additionally, FTMM has a significant history of training and housing troops. In support of these activities, FTMM has had a full complement of 26 support activities including vehicle maintenance, warehousing, medical and dental services, 27 photo processing, printing, historic solid waste handling methods (e.g., landfills), and facility 28 29 infrastructure (e.g., underground storage tanks [USTs]). Former activities have resulted in environmental releases that are being addressed within the Installation Restoration Program 30 (IRP) and BRAC Environmental Condition of Property (ECP) processes. 31

32 **1.6.1 FTMM-02**

According to the Installation Assessment (IA) (USATE-IAMA, 1980), the M-2 Landfill Site was in operation between 1964 and 1968 and was reportedly used for the general disposal of domestic and industrial wastes. Types of wastes reportedly disposed at the M-2 Landfill Site include oil in cans, oil burner filters and soot (Versar, 2001). The banks along Mill Creek towards the west end of the landfill were reportedly covered with building rubble (concrete and cinder blocks) to stabilize the bank (Versar, 2001).

39 **1.6.2 FTMM-03**

According to the IA, the M-3 Landfill Site was in use between 1959 and 1964, and was reportedly used for the general purpose disposal of domestic and industrial wastes, specifically wood and coal ash from furnaces and boilers (ATC, 2000).

1 **1.6.3 FTMM-04**

The M-4 Landfill Site was in use as a landfill between 1955 and 1956, and was reportedly used for the disposal of building demolition debris. Aerial photographs dating back to 1940 show a swamp at this location prior to the operations of the landfill (Versar, 2005).

5 **1.6.4 FTMM-05**

The M-5 Landfill Site was in use as a landfill between 1952 and 1959, and was reportedly used for the disposal of automobiles (ATC, 2000).

8 **1.6.5 FTMM-08**

9 The M-8 Landfill Site was in use as a landfill between 1962 and 1981, and was reportedly 10 used for the disposal of domestic and industrial wastes (ATC, 2000).

11 **1.6.6 FTMM-12**

The M-12 Landfill Site was in use as a landfill between 1950 and 1966, and was reportedly used for the disposal of automobiles, domestic and industrial wastes (Versar, 2003).

14 **1.6.7 FTMM-14**

The M-14 Landfill Site was in use as a landfill between 1965 and 1966, and was reportedly used for the disposal of domestic and industrial wastes.

17 **1.6.8 FTMM-18**

The period of operation of the M-18 Landfill Site is unknown, however the site has reportedly been in use as a military training area since 1919 (Versar, 2004). Possible sources of contamination in or adjacent to the M-18 Landfill Site include spills from diesel and gasoline generators used to support field exercises, and from a riot control agent used in this area for troop protective mask training (Versar, 2003).

23 **1.6.9 FTMM-25**

The CW-3A Landfill Site was in use as a landfill between 1955 and 1956, and was reportedly used for the disposal of debris from the demolition of buildings at CWA (Versar, 2004).

27 **1.7 CURRENT AND PROJECTED LAND USE**

28 The 637-acre MP provided supporting administrative, training, and housing functions, as well as many of the community and industrial facilities for FTMM. These facilities are 29 distributed across the property, with no distinct clustering of functions. Approximately 397 30 buildings and structures are present at the MP. The CWA was used primarily for R&D, testing, 31 32 housing, and recreation. The former CWA research, development, and testing facilities occupy the southwest corner of CWA. The northwest corner formerly consisted of residential units but is 33 currently undeveloped. Residential units currently occupy the southeastern boundary and the golf 34 35 course occupies the northeast corner. The CWA contains approximately 241 buildings and structures. 36

37 **1.7.1 FTMM-02**

The M-2 Landfill Site is currently vacant and covered with vegetation (i.e., grass, trees and brush). The M-2 Landfill Site is projected to consist of an open field maintained through landscaping with a multi-purpose trail traversing the site from east to west along the northern
 boundary (EDAW, 2008).

3 **1.7.2 FTMM-03**

The M-3 Landfill Site currently consists of an open field and is maintained through landscaping. The M-3 Landfill Site is projected to consist of an open field maintained through landscaping with a multi-purpose trail traversing the southern boundary of the M-3 Landfill Site (EDAW, 2008).

8 **1.7.3 FTMM-04**

9 The M-4 Landfill Site currently consists of an open field maintained through landscaping 10 (Versar, 2005). The M-4 Landfill Site is projected to consist of an open field maintained through 11 landscaping, with a multi-purpose trail traversing the western border of the M-4 Landfill Site 12 (EDAW, 2008).

13 **1.7.4 FTMM-05**

The M-5 Landfill Site currently consists of an open field which is maintained through landscaping (Versar, 2004). The M-5 Landfill Site is projected to consist of an open field maintained through landscaping, with a multi-purpose trail traversing the western border of the M-5 Landfill Site (EDAW, 2008).

18 **1.7.5 FTMM-08**

The M-8 Landfill Site currently consists of vegetative cover (i.e., grass, trees and bushes) (RAPR, 2012). The M-8 Landfill Site is projected to consist of an open space maintained through landscaping, with a multi-purpose trail traversing the site from east to west, and two pedestrian trails one along the western boundary and one along the eastern boundary of the M-8 Landfill Site (EDAW, 2008).

24 **1.7.6 FTMM-12**

The western portion of the M-12 Landfill Site was found to be backfilled and graded with dark organic soil fill material with no vegetation present, with the exception of areas along Husky Brook which was bounded with trees. The eastern portion of the M-12 Landfill Site currently consists of open field of grass (Versar, 2003). The M-12 Landfill Site is projected to consist of an open space maintained through landscaping, with a multi-purpose trail traversing the northern boundary of the M-12 Landfill Site (EDAW, 2008).

31 **1.7.7 FTMM-14**

There is no documentation available regarding the current conditions at the M-14 Landfill Site. Aerial imagery shows the M-14 Landfill Site currently consists of vegetative cover (i.e., grass, trees and shrubs) over the eastern portion of the M-14 Landfill Site, and a partially wooded area over the western portion of the M-14 Landfill Site. The M-14 Landfill Site is projected to consist of an open space maintained through landscaping, with a multi-purpose trail traversing the southern boundary of the M-14 Landfill Site (EDAW, 2008).

38 **1.7.8 FTMM-18**

The M-18 Landfill Site currently consists of a partially wooded lot with tall grasses in the center and trees along Parkers Creek, which is located to the north, and was bounded by a fence to the south (Versar, 2004). The M-18 Landfill Site is projected to consist of an open space
 maintained through landscaping with a multi-purpose trail traversing the site from east to west
 (EDAW, 2008).

4 **1.7.9 FTMM-25**

The CW-3A Landfill Site currently consists of a partially wooded lot with tall grass to the center and trees to the north, east and west, and a parking area for the Pulse Power Facility to the south (Versar, 2005). The M-25 Landfill Site is projected to consist of an open space maintained through landscaping (EDAW, 2008).

9 1.8 PREVIOUS INVESTIGATIONS AND HISTORICAL DATA

10 Consistent with the discussion in Section 1.2.1, previous investigation and historical data 11 information will only be presented for the M-2 Landfill Site for this section. Details of previous 12 investigations and historical data for the other landfill sites are presented in the RIs that have 13 been previously completed.

14 **1.8.1 FTMM-02**

15 1.8.1.1 A Site Investigation (SI) of the M-2 Landfill Site was performed in 1995. The SI activities included surface water sampling and installation and sampling of three groundwater 16 monitoring wells. Soil characterization was not performed during the SI. Groundwater 17 analytical data from the monitoring wells indicated that chlorobenzene concentrations exceeded 18 19 the NJDEP Ground Water Quality Criteria (GWQC). There were no detections of semi volatile organic compounds (SVOCs), pesticides or cyanide above the NJDEP GWQC. Twenty metals 20 21 were detected in site groundwater; however, only five (aluminum, arsenic, iron, manganese, and lead) were found at concentrations exceeding the NJDEP GWQC, but were detected at 22 concentrations below the maximum background concentrations established in the SI report 23 (Weston, 1995) and are therefore not identified as Contaminants of Potential Concern (COPCs). 24

1.8.1.2 A Remedial Investigation (RI) that included soil (surficial, shallow and deep) and
groundwater characterization of the M-2 Landfill Site was performed from May 1997 through
June 2000 to determine the extent of the impacts of polychlorinated biphenyls (PCBs) and
benzene found at the M-2 Landfill Site during the expanded SI (Versar, 2001).

As part of the PCBs soil investigation, 73 Geoprobe® borings were advanced in 29 1.8.1.3 the eastern and westerns portions of the M-2 Landfill Site. Samples were collected continuously 30 31 to the groundwater table, approximately 8 feet bgs. Soil samples were collected and analyzed for total PCBs using EPA Method 8082. The PCBs detected were primarily Aroclor 1016 and 32 Aroclor 1260, although Aroclors 1242 and 1254 were also occasionally detected. The analysis of 33 samples from a boring typically continued if a detection for PCBs was reported in a sample, the 34 35 next sample depth interval was then analyzed until either non-detect (ND) or a result below the Residential Direct Contact Soil Cleanup Criteria (RDCSCC) was found. The PCB 36 concentrations greater than the RDCSCC ranged from 0.496 mg/kg to 805.06 mg/kg and were 37 detected at depths that ranged from 0.5 to 8.5 ft bgs. Soil boring information shows PCB 38 concentrations appear to be randomly distributed both within and among the soil borings, 39 therefore, no specific PCB source area was identified at the M-2 Landfill Site (Versar, 2001). 40

1.8.1.4 Grab groundwater samples were collected from 45 of the 73 Geoprobe® soil
 borings and analyzed for total PCBs. PCBs were detected in 14 of the groundwater samples and

eight of the samples exceeded NJDEP GWQC for PCBs (0.5 μ g/L). Of the eight grab samples exceeding NJDEP GWQC, two of the samples were located within the eastern portion of the M-2 Landfill Site, and six of the samples were located within the western portion of the M-2 Landfill Site. The PCB detected in the grab groundwater samples were more likely entrained onto the sediment particulates contained in the sample (due to the sampling method) and do not represent actual groundwater conditions (Versar, 2001).

Following the PCB investigation, a soil investigation was conducted to delineate 7 1.8.1.5 VOC (benzene and chlorobenzene) concentrations in the soil and shallow groundwater of the M-8 9 2 Landfill Site. Samples were collected continuously from the ground surface to the groundwater table, which was approximately 8 feet bgs. A total of 208 Geoprobe® soil samples 10 11 were collected in March 1999 as a part of the investigation for the analysis of VOCs at depths ranging from 1 foot to 9 feet bgs. Ten VOCs were detected in the soil samples including 12 methylene chloride, carbon disulfide, chlorobenzene, benzene, ethyl-benzene, total xylenes, 2-13 butanone, toluene, acetone, and chloroform. None of the 10 VOCs detected were above their 14 respective NJDEP RDCSCC (Versar, 2001). 15

A groundwater investigation was conducted at the M-2 Landfill Site in 16 1.8.1.6 conjunction with the investigation of the soils for VOCs in March 1999. Groundwater samples 17 were collected from 185 Geoprobe[®] borings and analyzed for VOC. Twenty (20) VOCs were 18 detected in the groundwater samples including methylene chloride, carbon disulfide, 19 chlorobenzene, benzene, ethylbenzene, total xylenes, toluene, acetone, chloroform, 1,4-20 dichlorobenzene (DCB), 1,2-DCB, 1,3-DCB, PCE, TCE, vinyl chloride (VC), trans-1,2-21 dichloroethane (DCE), 2-butanone, tert-butyl alcohol (TBA), and methyl-tert-butyl ether). Of 22 the VOCs detected, three (methylene chloride, chloroform, and acetone) were also detected in 23 the field blanks and were considered to be present due to laboratory introduction; seven VOCs 24 (ethylbenzene, xylenes, toluene, 1,4-DCB, 1,2-DCB, 1,3-DCB, 2-butanone) were below their 25 respective GWOC; three VOC (carbon disulfide, tert-butyl alcohol [TBA], and methyl-tert-butyl 26 ether [MTBE]) had no established GWQC at the time of the investigation, but now do have 27 criteria values in New Jersey; and two VOCs (chlorobenzene and benzene) were detected above 28 29 their respective GWQC. Six VOCs (benzene, chlorobenzene, PCE, TCE, cis 1,2-DCE and VC) were detected above their respective GWQC. Benzene and chlorobenzene were detected at 30 concentrations that exceed their respective GWQC at multiple locations and are considered 31 COPCs. PCE, TCE, cis 1,2-DCE, and VC were detected at concentrations that exceed their 32 respective GWQC at one boring location and are generally not considered COPC (Versar, 2001). 33

A total of 193 borings were advanced at the M-2 Landfill Site between November 34 1.8.1.7 1998 and June 1999 to characterize the near surface soils (0 to 2 feet bgs) and assess potential 35 risks to human health or the environment. Soil samples were analyzed for VOCs, SVOCs, 36 pesticides, PCBs and metals. No VOCs exceeded their respective RDCSCC. Seven SVOCs 37 38 were detected at concentrations exceeding the NJDEP RDCSCC at 12 boring locations scattered across the landfill. Three pesticides (4,4'-DDT, Dieldrin, and 4,4'-DDE) and four PCB 39 compounds (Aroclor 1242, 1254, 1258, and 1260) were detected at concentrations exceeding the 40 respective RDCSCC at 11 boring locations scattered across the landfill. Seven metals (arsenic, 41 42 beryllium, cadmium, nickel, zinc, lead, and mercury) exceeded their respective RDCSCC at 19 boring locations. Sample locations with exceedences were generally scattered along the northern 43 edge of the landfill with some also located along the southern edge (Versar, 2004). 44

Although exceedences of NJDEP RDCSCC are identified in the near surface soils 1.8.1.8 1 for SVOC, pesticides/PCB, and metals within the landfill, evaluation of the analytical results did 2 not define a "source area" or level of contamination that necessitated the identification and 3 evaluation of potential remedial actions (Versar, 2001). No further action is warranted for the 4 near surface soils because either the specific calculated compliance average was below the 5 respective RDCSCC, the exceedence was considered marginal, or an isolated location and a de 6 minimis quantity was detected (Versar, 2004). In a NJDEP comment letter on the Remedial 7 Investigation Report for Near-Surface Soils and four Remedial Action Progress Reports (RAPR) 8 9 dated June 26, 2009, NJDEP stated that the "averaging policy is applied incorrectly" at the M2-Landfill Site. In addition, NJDEP stated in the comment later dated November 20, 2013 that they 10 did not agree that the near surface soils had "marginal" exceedences and they did not agree that 11 the exceedences were of "an isolated nature and a de minimis quantity." 12

1.8.1.9 A total of 24 groundwater monitoring wells were installed and incorporated into 13 the LTM program at the M-2 Landfill Site. Initially, three wells were installed in 1994 during 14 the SI to characterize the groundwater at the M-2 Landfill Site. An additional seven wells were 15 installed during the third and fourth quarters of 1998. The final 14 wells were installed during 16 the PCB investigation performed in April 2000 (Versar, 2001). The wells were installed to 17 characterize the shallow groundwater at two distinct depth intervals: approximately 13 to 22 ft 18 bgs, a depth interval considered to be within the fill, and 30 to 50 ft bgs, a depth considered to be 19 20 below any fill material. Groundwater analytical data indicated 20 VOCs were detected but only two compounds (benzene and chlorobenzene) were identified in the groundwater at 21 22 concentrations that exceeded their respective GWQC (Versar, 2004).

1.8.1.10 In October 2002, the NJDEP approved the implementation of an Enzyme-23 Enhanced Bioremediation (EEB) program, supplemented by Oxygen Release Compounds 24 25 (ORC), to remediate benzene and chlorobenzene identified in shallow groundwater at the M-2 Landfill Site. (The EEB program was documented in the January 2001 Remedial Investigation 26 Report (RIR)/Remedial Action Work Plan (RAWP) prepared by Versar, Inc.). The EEB/ORC 27 program targeted six distinct areas in and around the M-2 Landfill Site where elevated 28 29 concentrations of benzene and chlorobenzene were detected in the shallow groundwater. Four ORC injections events were performed at the landfill from March 2001 through July 2005 30 (RAPR, 2012). 31

1.8.1.11 TBA has been included as a COPC for the M-2 Landfill Site because there was no
 NJDEP GWQS prior to November 2005 established for the compound.

1.8.1.12 LTM of the groundwater at the M-2 Landfill Site has been performed since May
 1997. Concentrations of the three COPCs have decreased since initiation of monitoring although
 the concentrations have fluctuated with time and continue to exceed the GWQS (RAPR, 2010).
 SVOCs and pesticides were eliminated from the monitoring program after the March 2009 event.
 Metals detected in the groundwater are believed to be naturally occurring.

3

SECTION 2 TECHNICAL MANAGEMENT PLAN

2.1 INTRODUCTION

The purpose of this Technical Management Plan is to provide the approach and procedures that will be used to execute the tasks required to perform a RI/FS for FTMM-02, FTMM-03, FTMM-04, FTMM-05, FTMM-08, FTMM-12, FTMM-14, FTMM-18 and FTMM-25. This section focuses on the project objectives, organization, personnel, communication and reporting, deliverables, schedule, billing, public relations, duties and responsibilities, and the functional relationship between the different organizations. Much of the information included in this section is also provided in the PMP (Parsons, 2012). The project objectives are provided below.

11 2.2 PROJECT OBJECTIVE

The overall objective and purpose of this task order is to perform a RI/FS for FTMM-02, 12 FTMM-03, FTMM-04, FTMM-05, FTMM-08, FTMM-12, FTMM-14, FTMM-18 and FTMM-13 25. Following completion of the field investigation phase, if warranted, for only FTMM-02, a 14 RI/FS report will be produced for each site that characterizes the nature and extent of COPCs at 15 the sites, compiles information to fill data gaps remaining from previous investigations, evaluates 16 17 the potential risk to human health and the environment, evaluates remedial alternatives, and recommends a preferred alternative. Based on discussions and correspondence with the NJDEP 18 that the preferred remedial alternative will consist of placement of a vegetated soil cover over the 19 20 existing landfill area. The overall goal of this process is to obtain NJDEP concurrence on the final RI/FS reports, and if appropriate, provide sufficient data to facilitate future remedial 21 actions. The specific project objectives are also subsection 1.2. 22

23

2

SECTION 3 INVESTIGATION PLAN

3 This Investigation Plan outlines the specific activities that Parsons will perform during the supplemental RI at the M-2 Landfill Site. The purpose of these activities are to evaluate if the 4 M-2 Landfill Site extends under the former railroad tracks. The Investigation Plan includes 5 discussion of the conceptual site model (CSM), historical research to be performed, and potential 6 7 field data collection activities. Sampling procedures are discussed in detail in the SAP (Appendix E), which has been prepared as a separate, stand-alone document. This section also 8 includes the approach to risk characterization and analysis, and FS evaluation of remedial 9 10 technologies and alternatives.

11 3.1 CONCEPTUAL SITE MODEL

3.1.1 A CSM is a description of a site and its environment that can be used to depict the 12 nature of potential contamination, its location, and the possible interactions of human and 13 14 environmental receptors with that contamination. The CSM summarizes which potential receptor exposure pathways for contaminants are (or may be) complete and which are (and are 15 likely to remain) incomplete. An exposure pathway is considered incomplete unless the four of 16 the following elements are present (USEPA, 1989): (1) a source of contamination; (2) an 17 18 environmental transport and/or exposure medium; (3) a point of exposure at which the contaminant can interact with a receptor; and (4) a receptor and a likely route of exposure at the 19 exposure point. If any single factor is not present, the pathway is incomplete. An incomplete 20 exposure pathway indicates that there are no current means by which a receptor (human or 21 ecological) can come into contact with contaminants; therefore, no hazards or risks from 22 exposure to contaminants would be expected. This information can be used to focus the 23 investigation of the site by suggesting which complete or potentially complete exposure 24 25 pathways need to be evaluated. The CSM is a 'living document' that is based on existing knowledge and therefore, can and should be updated throughout the course of the project as more 26 data become available. 27

28 3.1.2 For the purposes of this RI/FS, a preliminary CSM was developed for the M-2 Landfill Site in accordance with Engineering Manual (EM) 1110-1-1200. This CSM is presented 29 as a summary table (Table 3.1) that indicates the known or suspected contamination sources, the 30 potential/suspected locations and distribution of contamination, the related source or exposure 31 media, the current and future receptors, and the potentially complete exposure pathways. The 32 CSM for the M-2 Landfill Site is also presented as a flow chart that depicts the possible 33 34 contaminant migration and exposure pathways for the various site receptors (Figure 3.1). The 35 contamination sources, the locations and distribution of contamination, the related source and exposure media, the current and future receptors, and the complete exposure pathways for the 36 other eight landfill sites have been fully characterized and therefore no CSMs were developed as 37 part of this RI/FS Work Plan. The finalized CSMs for the landfill sites will be presented in 38 39 RI/FS reports for each site and will be based on existing site data and information contained in 40 the BEE Report (Shaw, 2012).

3.1.3 The preliminary CSM for the M-2 Landfill Site indicates adequate delineation and
 characterization except for the area along the southern boundary adjacent to former railroad
 tracks. The CSM assumes the railroad bed and tracks were constructed before the M-2 Landfill

Site was operational based on the age of the base and the assumption that railroad was the 1 primary mode of transportation at the time. Based on the topographic data this would provide a 2 delineation of the southern extents of the M-2 Landfill Site. Previous subsurface investigations 3 indicate that VOC (chlorobenzene and benzene) concentrations in subsurface soils exceeded 4 NJDEP criteria only in the center and northwestern portions of the M-2 Landfill Site. Six metals 5 (arsenic, beryllium, cadmium, lead, mercury, and nickel) in shallow soils at a few locations 6 7 exceeded NJDEP criteria only along the northern edge and the southeast corner of the M-2 Landfill Site. Six SVOCs (PAHs) were detected at concentrations exceeding NJDEP criteria in 8 9 the near surface soils at 39 locations scattered across the M-2 Landfill Site. Pesticide concentrations in shallow soils exceeded NJDEP criteria only toward the southern edge of the M-10 2 Landfill Site. The source of the pesticides may be associated either with the adjacent 11 residences south of the abandoned railroad tracks, or past pesticide spraying for mosquito 12 control. PCB concentrations which exceed NJDEP criteria are present in both shallow and 13 subsurface soils at several locations toward the northwest, northeast and southeast corners of the 14 M-2 Landfill Site. No PCB concentrations exceeded NJDEP criteria toward the southwest 15 corner of the M-2 Landfill Site. Three VOCs (benzene, chlorobenzene, and TBA) and metals are 16 present in shallow groundwater at concentrations that exceed NJDEP criteria, however the 17 metals are believed to be naturally occurring. As noted on Figure 3.1, groundwater at the M-2 18 19 Landfill Site is not a source of drinking water, and the site will not be transferred for residential 20 use, therefore there is no risk of a groundwater exposure scenario. If it has been determined that the railroad was installed after the landfill was operational based on historical research then soil 21 22 samples will be collected to confirm the delineation of the southern boundary of the M-2 Landfill Site along the railroad bed. If soil samples are collected to determine the southern extent of the 23 24 landfill boundary then data regarding VOC, PCB and metal concentrations in soil would also be collected to assess current concentrations to confirm they do not exceed NJDEP criteria. 25 Potentially, complete exposure pathways are present at the site that might result in intrusive site 26 workers being exposed to VOC, PCB and/or metals if contaminated soil and/or groundwater is 27 28 encountered during intrusive activities.

Table 3.1 Overview of Preliminary Conceptual Site Model and Supplemental Remedial Investigation Technical Approach Fort Monmouth, New Jersey

SITE	PRELIMINARY CONCEPTUAL SITE MODEL SUMMARY					REMEDIAL INVESTIGATION TECHNICAL APPROACH			
DETAILS	Known or Suspected Contamination Source (s)	Location and Extent of Contamination	Source or Exposure Medium: COPCs	Current and Future Receptors	Potentially Complete Exposure Pathways	Investigation Method	Investigation Location(s)	Proposed Samples	Number of Samples
NAME:	M-2 Landfill Site	Soil samples	Subsurface	Intrusive	Incidental	Historical review:	Collect soil samples along	Geoprobe® borings will be	Characterization of surficial soils
FTMM-02	is located in the	detected VOCs,	soil: VOCs,	workers, non-	ingestion of	Review of aerial	the length of the abandoned	advanced along the northern	has been performed at the M-2
(also known as	southwest corner	PAHs, PCBs	PCBs, and	intrusive	subsurface soil	photos and	railroad track to the south,	edge of the abandoned	Landfill Site during a previous
M-2	of the Main Post	and metals	metals.	workers, and	and	historical	and groundwater samples	railroad bed. Two soil	RI, therefore surface soil (0 to 2
LANDFILL	and was	concentrations		occasional users	groundwater,	documents to	in existing monitoring	samples will be collected	feet) will not be sampled unless
SITE)	historically used	that exceeded	Groundwater:	(visitors,	dust	determine date of	wells under the long term	from each sampling	there is field evidence of
	for general	NJDEP criteria.	Benzene,	recreational)	inhalation,	railroad installation	monitoring program.	location. If samples suggest	contamination. One soil sample
HISTORICAL	disposal of		Chlorobenzene,		dermal contact			landfill material present	shall be collected from the
LAND USE:	domestic and	Groundwater	TBA.		with	Subsurface soil:		then additional step out	equivalent depth of 5 feet into
LANDFILL	industrial wastes.	samples	(20 Metals		subsurface soil	Collect discrete		borings will be performed.	the landfill (approximately 15
USED FOR	M-2 Landfill site	detected some	detected in site		and	subsurface soil			feet bgs). A second sample will
DISPOSAL OF	encompasses	VOC and	groundwater		groundwater	samples for visual			be collected if there is visual or
DOMESTIC	280,400 square	elevated metal	above NJDEP		by intrusive	characterization			olfactory evidence of
AND	feet (6.5 acres)	concentrations	GWQC,		workers.	and laboratory			contamination and/or elevated
INDUSTRIAL	and was	(metal	however only			analyses using			PID headspace readings.
WASTES	operational from	concentrations	five were			direct push			
	1964 to 1968.	may be	above			techniques.			The analytical results will be
CURRENT		representative	maximum						used during the FS to evaluate
LAND USE:	Known wastes	of natural	levels			Groundwater:			remedial alternatives for the site.
VACANT	disposed of at this	background	established in			Samples from the			
FIELD	site include oil in	conditions).	the SI report			existing monitoring			
	cans, oil burner	The southern	[Weston, 1995]			wells will be			
FUTURE	filters and soot.	extent of the	and are			collected under the			
LAND USE:		landfill has not	therefore not			long term			
UNKNOWN		been defined.	COPCs).			monitoring (LTM)			
						plan.			

3.2 GENERAL TECHNICAL APPROACH

This subsection describes the general sequence of execution and activities that Parsons will use to successfully complete the investigation for the M-2 Landfill Site. The detailed field procedures to be used for the activities described in the following technical approach are described in the SAP (**Appendix E**). The supplemental RI data will be used to support evaluation (in the planned FS) of potential corrective actions at the M-2 Landfill Site.

7 3.2.1 FTMM-2 Investigation Plan

8 3.2.1.1 Historical Research

Research will be conducted to determine if the railroad was constructed before or after operations began at the M-2 Landfill Site. Historical information to be researched may include aerial photographs, deed records and records of easement if available. If the historical research shows that the railroad was installed prior to operations at the M-2 Landfill Site, no soil investigation will be conducted.

14 **3.2.1.2 Soil and Groundwater Investigation**

3.2.1.2.1 If the historical research is inconclusive or shows that the railroad bed was
 constructed after the landfill, a soil investigation will be performed to confirm that landfill
 material is not located under the former railroad bed and tracks. The objectives of the RI field
 work at the M-2 Landfill Site will be to:

- 19 20
- Confirm delineation of the southern boundary through visual characterization and chemical analysis of subsurface soils.

The specific activities that will be performed to meet these objectives are described in the following paragraphs.

3.2.1.2.2 Soil borings, spaced at approximately 150 feet apart, will be advanced along the 23 southern boundary of the M-2 Landfill Site (Figure 3.2) (Locations may change based on actual 24 25 field conditions). The railroad bed has a higher elevation than the ground surface at the M-2 26 Landfill Site, with the difference in elevation ranging between approximately 10 feet towards the west, to approximately 3 feet towards the eastern end of the M-2 Landfill Site. One soil sample 27 will be collected at each boring location, at an equivalent depth of 5 feet into the landfill 28 (approximately 15 feet bgs). A second sample will be collected based on presence of visual or 29 olfactory evidence of contamination and/or elevated PID headspace readings. Each sample will 30 be visually characterized for soil composition and waste debris, and analyzed in a laboratory for 31 PCBs, VOCs and metals. 32

33 3.2.1.2.3 Additional step-out soil borings will be performed south of the railroad bed if 34 landfill waste is visually observed in the borings and the analytical results indicate similar 35 chemical properties from within the footprint of the landfill.

36 3.2.1.2.4 A long-term groundwater monitoring program will continue to be implemented at 37 the M-2 Landfill Site. Groundwater will be sampled from existing monitoring wells as part of 38 this program and analyzed for VOCs (specifically benzene and chlorobenzene) and TICs. The 39 existing monitoring well network is shown on **Figure 3.2**. The groundwater data will be 40 incorporated into the RI/FS Report.

3.2.2 Data Quality Objectives

3.2.2.1 Data Quality Objectives (DQOs) are qualitative and quantitative statements that
specify the quality and level of data required to support the decision-making processes for a
project. Guidance for DQO development is contained in Chapter 4 of EM 200-1-2 Technical
Project Planning Process (USACE, 1998), Guidance for Performing Site Inspections Under
CERCLA (USEPA, 1992), and Guidance on the Data Quality Objectives Process (USEPA,
2006).

8 3.2.2.2 The overall project DQOs are to obtain additional data to delineate the southern 9 extents of the M-2 Landfill Site, thus they are a subset of the DQOs. The data obtained must 10 also be sufficient to assess site-specific human health risks to facilitate development of a future 11 FS. Specific DQOs have been established for the RI and are presented in **Table 3.2**. In addition, 12 analytical measurement performance criteria have been developed for target analytes as 13 presented in the UFP-QAPP in Part II of the SAP (**Appendix E**).

14 **3.2.3 Data Incorporation into RI/FS Reports**

3.2.3.1 Parsons will prepare and submit a supplemental RI report that fully documents the 15 M-2 Landfill Site investigation activities and provides subsequent evaluations and 16 recommendations. This report will describe the site history and the work conducted under this 17 18 delivery order and present conclusions regarding the nature/extent of contamination at the site, an updated CSM, a risk assessment (discussed in Section 3.5), and recommendations for any 19 future work that might be required. The supplemental RI report will be supported as necessary 20 with accompanying maps, charts, and tables to fully describe and document the work performed 21 22 and conclusions presented.

Parsons will prepare and submit a FS report that provides the necessary 23 3.2.3.2 24 information to select a final remedy for each site. The primary objective of the FS is to ensure that appropriate remedial alternatives are developed and evaluated, and an appropriate remedy 25 recommended. Alternatives that will most likely be evaluated include: no action (required for 26 comparison purposes), capping and monitoring. The FS will be conducted in accordance with 27 28 CERCLA requirements which suggest a formal process including establishing remedial action objectives (RAOs), identifying and screening technologies, and conducting detailed analysis of 29 alternatives using specified criteria. Remedial alternatives will be screened to ensure compliance 30 with CERCLA statutory provisions, which include protection of human health and the 31 environment, compliance with applicable or relevant and appropriate requirements (ARARs), 32 cost effectiveness, and a preference for permanence and for treatment that reduces toxicity, 33 34 mobility, or volume. Also evaluated will be the reuse of material from both onsite and offsite 35 sources to promote sustainable practices and minimize costs; alternate cap configurations that achieve ARARs while minimizing the amount of fill material required and consolidating landfills 36 to minimize cover material required and potentially making more land available for wetlands 37 restoration or development. Economic analysis information developed to compare restricted use 38 39 closure to unrestricted use closure will also be evaluated in accordance with FS guidance to enable selection of a cost effective remedial alternative. This will include a complete life-cycle 40 cost analyses for each alternative based on a 30-year present worth. 41

Table 3.2
Data Quality Objective Statements for Supplemental Remedial Investigation and Feasibility Study
Fort Monmouth, New Jersey

	INTENDED DATA USE(S)			DA	APPROPRIATE SAMPLING AND ANALYSIS METHODS				
Site ID	Project Objective(s) Satisfied	Data User Perspective(s)	Contaminant or Characteristic of Interest Identified	Media of Interest Identified	Required Sampling Areas or Locations and Depths Identified	Amount of Sampling / Number of Samples Required	Reference Concentration of Interest or Other Performance Criteria	Sampling Method Identified	Analytical Method Identified
FTMM-02 (M-2 LANDFILL SITE)	Complete delineation of the landfill and perform additional soil characterization of landfill soils along southern landfill boundary. (If railroad was built before the landfill operations then no soil investigation will be conducted.)	Risk (RI) and remedy (FS)	VOCs, PCBs, and metals	Subsurface soil	Along northern edge of former railroad bed along FTMM-02 southern boundary.	Two samples per boring. Total number of borings TBD	NJDEP RDCSRS	Collection of discrete soil samples using direct push techniques	VOCs using USEPA Method SW8260C, total metals using USEPA method SW6010C and 7471B, PCBs using USEPA Method 8082

2

3 4

9

3.3 GEOSPATIAL INFORMATION, DIGITAL FIELD DATA COLLECTION, AND ELECTRONIC SUBMITTALS

Parsons will perform activities related to gathering and maintaining geospatial information in accordance with the PWS.

5 **3.3.1 Geospatial Information**

6 Geospatial information will be collected and maintained in accordance with PWS and the 7 Data Management Plan (DMP).

8 3.3.2 Digital Field Data Collection Methodology

Field documentation including photographs is discussed in the SAP (Appendix E).

10 **3.3.3 Electronic Submittals**

11 Electronic submittals are discussed in the PMP.

12 3.4 WASTE MANAGEMENT PLAN

Investigation derived wastes (IDW) generated during the field activities will be managed in
 accordance with the procedures provided in the SAP (Appendix E).

15 **3.5 RISK CHARACTERIZATION AND ANALYSIS**

16 3.5.1 The validated laboratory data will be used to conduct a HHRA for each of the 17 nine RI sites compatible with Risk Assessment Guidance for Superfund (RAGS) and USACE 18 EM 200-1-4, Volume I. This risk assessment which will be included in the RI/FS reports for 19 each site, will include a screening step during which site concentrations will be compared to 20 screening levels for human health and ecological risks, current and future risks, and media, 21 pathways and exposure scenarios. Residential criteria will be used for human health-based risk 22 analysis.

3.5.2 Data evaluation will also consist of discussions related to the probable fate and
 transport of constituents that pose a concern at the site. This discussion in the RI/FS report will
 include transport pathways, receptors, and exposure pathways.

26 **3.6 MOBILIZATION/DEMOBILIZATION**

27 **3.6.1 Preparation**

Preparations for mobilization will commence upon approval of this work plan. Upon receipt of the approval, the field team will be notified and the requisite copies of the applicable documents assembled. The field team will have already reviewed the available site documentation, the work plan, and any additional data obtained during previous site visits.

32 **3.6.2 Equipment Mobilization**

Equipment and materials will be sent to the site via commercial carrier, transported to the site by the field team, or obtained locally. Equipment is limited to sampling supplies, documents, first aid kit, fire extinguisher, GPS, digital camera, etc. Appropriate field vehicles will be rented that will accommodate site personnel and equipment. FTMM access and security requirements are detailed in the PMP.

1 **3.6.3 Right-of-Entry**

The soil investigation assumes FTMM will be able to secure access to the area from the appropriate landowners. Access to FTMM will be requested in accordance with the procedures outlined in the SAP (**Appendix E**).

5 **3.6.4 Communications**

6 The field team will remain in contact together throughout field activities. Members of the 7 field team will have operational mobile phones available for emergency use.

8 **3.6.5** Training and Briefing

9 Training and briefing will be performed in accordance with the APP provided in Appendix
10 D.

SECTION 4 QUALITY CONTROL PLAN

3 4.1 GENERAL

The purpose of the Quality Control Plan (QCP) is to provide the approach and procedures used to ensure quality throughout the execution of the tasks required by the PWS. The QCP provides organization, responsibilities, policies, and procedures for maintaining the highest possible standards. The QCP applies to work performed by Parsons and its subcontractors. Additional QC information is provided in the QAPP, which is included as Section 7 in the SAP (**Appendix E**).

10 4.2 CORPORATE POLICY

Parsons recognizes that the USACE is responsible for quality assurance (QA); 4.2.1 11 however, Parsons also has a QA process at the corporate level with the commitment and 12 13 involvement of its top management. The process provides a permanent and workable system that allows each employee to understand the job performance expected. The Parsons QA and 14 improvement process ensures that every employee is supported by the actions, procedures, tools, 15 and training required to perform their job according to the requirements. By promoting 16 teamwork and by focusing attention on the solutions, the quality of work can be increased and 17 assured throughout the project. 18

19 20

21

22

Parsons Corporation Quality Policy

We are committed to providing quality services and products. We will, as a corporation and as individuals, meet the mutually agreed-to requirements the first time and strive for continuous improvement of our work processes.

4.2.2 The Parsons QA Policy is based on the work and concepts of several recognized 23 authorities on quality management in the United States, especially Mr. Philip Crosby, Dr. W.E. 24 Deming, and Dr. J.M. Juran. These three experts each have different methods of addressing and 25 resolving problems. Parsons has taken unique portions of their concepts and tailored them to 26 corporate work processes. As a result, Parsons has placed a greater emphasis on the actual 27 28 elements pertaining to work processes, project requirements, and lessons learned from past 29 performances. These concepts have been developed into a systematic and practical approach for improving quality. 30

- 4.2.3 Generally, the Parsons QA Policy relies on four fundamentals, termed the "absolutes of quality." They answer these questions:
- What is quality? Conformance to Requirements;
- How do we achieve it? Prevention;
- What is our performance standard? Zero Defects; and
- How can we measure quality? Cost of Doing Things Wrong.

37 4.3 REQUIREMENTS

The Parsons QCP for the RI/FS at FTMM project sites has been written to encourage positive communication throughout the Parsons project team. It is also intended to foster clear

10

11

12

13

14

30

31

35

communication between Parsons, USACE, and FTMM. Honest and effective communication
 among the project team requires that parties clearly understand the project requirements. QC
 reports and documents will be kept onsite and accessible for review upon request. Copies of QC
 reports and documents will be transmitted to the Parsons PM for inclusion in the project file.

5 4.4 QUALITY CONTROL OBJECTIVES

4.4.1 The QC procedures described in this section will be used for the activities
performed during the RI. These procedures were designed to manage, control, and document
performance of work efforts. This section of the QCP will achieve the following objectives:

- Identify QC procedures and responsibilities for the RI/FS;
- Ensure USACE, FTMM, and Parsons notifications are performed as required by the PWS;
- Document the quality of work efforts via audits and independent staff reviews of deliverables;
- Ensure data integrity through implementation of data management QC procedures;
- Ensure data precision through implementation of field equipment maintenance and use procedures; and
- Outline an inspection system.

4.4.2 Project quality is the responsibility of the entire project team. The team's comprehension of this QCP is of primary importance for quality objectives to be accomplished; thus, training and indoctrination of key personnel in the quality objectives will be conducted. The project organization is headed by the Parsons PM; the single focal point for successful accomplishment of the phases of the project. The Parsons PM is given full authority and responsibility for project execution, and the Parsons PM is supported by direct line managers with functions and responsibilities outlined below.

4.4.3 The Parsons Project Manager (PM) approves the QCP, implements procedures,
 and has direct responsibility for day-to-day management of the project. The Parsons PM's
 responsibilities related to QC include, but are not limited to:

- Implementation of applicable Parsons policies and procedures;
- Timely submission of contract deliverables; and
 - Analyzing QC failures with the QC Manager and the appropriate QC person and implementing corrective actions.

4.4.4 The Project QC Manager communicates with the PM on project-related QC
 matters. The Project QC Manager, as a management representative, has the following authorities
 and responsibilities:

- Ensuring that the QCP has been established, maintained, and implemented;
- Establishing guidelines to assist in the development of program, project, site, and task-specific QC policies and procedures;
- Initiating, recommending, approving, and providing solutions to the quality problems
 identified in the QCP during system audits;

1 2	•	Conducting periodic audits/inspections of the project and submitting reports to the Parsons Sector Manager with copies to the PM; and
3 4	•	Reporting the adequacy, status, and effectiveness of ongoing projects to the Parsons Sector Manager.
5 6 7		The Field Team Leader reports to the Project QC Manager on quality matters, is QC person onsite, and has responsibility for overall quality of work performed on site. Insibilities include, but are not limited to:
8	•	Developing QC procedures to implement the QCP;
9	•	Verifying implementation of corrective actions;
10 11	•	Initiating actions to identify and prevent the occurrence of nonconformance relating to the services and QCP;
12	•	Authorizing the cessation of nonconforming work;
13 14	•	Ensuring that QC procedures are being followed and are appropriate in demonstrating data validity sufficient to meet DQOs;
15 16	•	Recommending actions to be taken in the event of QC failures, both to the PM and the Project QC Manager;
17	•	Reporting non-compliance with QC criteria to the PM and Project QC Manager;
18 19 20	•	Authorizing suspension of project activities when a condition adverse to quality is identified and notifying the PM and senior personnel responsible for clearance activities when such action is required;
21	•	Conducting daily QC audits and inspections; and
22	•	Conducting weekly and monthly QC Compliance Inspections.
23	4.5 Q	UALITY CONTROL FOR INSTRUMENT AND EQUIPMENT TESTING

Instruments and equipment used to gather and generate environmental data will be calibrated in accordance with the procedures outlined in the SAP (**Appendix E**).

26 **4.5.1 Digital Camera Quality Control**

The digital camera will be checked each day prior to use during the project. The battery level will be checked and, as needed, the batteries recharged or replaced. Before work begins each morning, team lead will verify that camera functions are working properly, that the date/time setting on the camera is correct, and the available memory space on the camera is sufficient for a complete day of site photography.

32 **4.5.2 Cell Phone Quality Control**

The team will keep at least one cell phone with them for emergency use. The cell phone will be checked each day prior to use during the project. The battery level will be checked and, as needed, the batteries recharged or replaced. In addition, the team will verify that cell phone coverage is adequate at the site. If at any time during the project it is determined that cell phone communication is not available at any portion of the site, an alternative method of emergency communication will be investigated.

1 4.5.3 Field Measurement Instrumentation Control

Field measurement instrumentation will be performed in accordance with the procedures outlined in the SAP (**Appendix E**).

4 4.6 INSTRUMENT/EQUIPMENT MAINTENANCE

5 Maintenance of instruments and equipment will be performed in accordance with the 6 procedures outlined in the SAP (**Appendix E**).

7 4.7 DATA MANAGEMENT

8 4.7.1 Data Reduction

9 4.7.1.1 Any raw data from field measurements will be appropriately recorded in field 10 notebooks. Records (field data forms and field note copies) will be maintained onsite in a 11 portable file. Records will be stored such that they can be found using the date they were 12 created, the team who created them and a site identification number. If the data are to be used in 13 the project reports, they will be reduced and summarized, and the reduction method will be 14 documented in the report.

4.7.1.2 Reduction of the laboratory data from environmental sampling activities is
 discussed in the SAP (Appendix E).

17 4.7.2 Field Data Storage

Data collected in the field will be stored electronically in the collecting instrument's data logger or recorded manually on hardcopy field forms. Data loggers, if used, will be synchronized with the field computer daily. Upon completion of the project, data will be transferred to the Parsons PM's office for storage and archiving.

22 **4.7.3 Data Validation**

Information in the project database will be validated in accordance with the DMP.
 Laboratory data validation is discussed in the SAP (Appendix E).

25 4.8 FIELD OPERATIONS DOCUMENTATION

26 **4.8.1 Daily Field Activity Records**

Daily field activity records will be prepared in accordance with the procedures outlined in the SAP (**Appendix E**).

29 4.9 NONCONFORMING ITEMS OR ACTIVITIES AND CORRECTIVE ACTIONS

4.9.1 Identification

Circumstances that prevent a work process from conforming to the contract requirements will be promptly identified, documented, investigated, and corrected appropriately. Project personnel have the responsibility, as part of their normal work duties, to promptly identify and report conditions adverse to quality. The status of nonconformance reports (NCR) will be maintained in a log, and progress of their resolutions will be documented and reviewed monthly to ensure prompt attention to their conclusion. 1 4.9.2 Resolution, Corrective Action, and Verification

The appropriate level of management is responsible for evaluating the cause of a NCR and will recommend solutions for correcting the deficiency identified. Actions and technical justifications for an action proposed to resolve the corrective action will be reviewed and approved by personnel responsible for the technical aspect of the work. The QC organization will be responsible for verifying implementation of corrective action, monitoring the effectiveness of preventive action, and reporting any findings to the QC Manager.

8 4

4.9.3 Material and Item Nonconformance

9 The QC Manager ensures that:

- Items that do not conform to prescribed technical and/or quality requirements are tagged or otherwise identified, documented, and reported as nonconforming. The documentation will include the following information:
- Identification of the nonconforming activity, material, or item;
- Identification of the technical and quality requirement(s) with which the activity,
 material, or item is not in compliance;
- Identification of the current status of the activity, material, or item (i.e. whether the item is on hold or whether its use is conditional);
- Names and dates of the individuals identifying the nonconformance;
- 19 Identification of the individual(s) or organization(s) responsible for resolution;
- 20 Indication of the severity of the nonconformance(s); and
- Indication regarding the continuance or stoppage of work associated with each
 nonconforming activity, material, or item.
- Nonconforming materials and items are segregated, when possible, from conforming materials and/or items to the extent necessary to preclude their inadvertent use; and
- The status of nonconforming activities, materials, and items and the progress of their resolution are documented and routinely reviewed to ensure prompt attention to conclusion.

4.9.4 Review and Disposition of Nonconformance

- The review is conducted by the PM, QC Manager, and Field Team Leader (if applicable) to ensure that:
- The responsibility for review and disposition of nonconformance is defined;
- Nonconforming materials and items are reviewed in accordance with procedures.
 Nonconformance can be evaluated according to four criteria:
- Reworked to meet the original requirements;
- 35 Accepted with or without repair;
- 36 Regraded for alternative applications; and
- Rejected or scrapped.

2

3

7

8

9

10

11

- Repaired or reworked materials items are re-inspected; and
 - Each document used to identify and correct nonconforming conditions allows for the evaluation and approval of proposed actions by the appropriate authority.

4 **4.9.5** Trend Analysis and Root Cause Analysis

- 5 4.9.5.1 The trend analysis of QC audits, subcontractor/supplier surveillance reports, and 6 identified nonconformance (if any) will include the following information:
 - Total number of audit findings and observations, surveillance reports, and NCRs for each area of the QCP;
 - A summary of the root cause for the nonconformance consolidated for each area of the QCP; and
 - Trends that are developing or that have developed.

4.9.5.2 The PM will perform the trend analysis once every year. QC will verify the implementation of any preventive actions resulting from the trend analysis. The QC Manager is responsible for evaluating on a semiannual basis NCRs affecting quality and will recommend solutions, as well as steps for verifying their implementation.

16 **4.9.6 Lessons Learned**

Opportunities to share lessons learned with the RI/FS project team include monthly telecoms to discuss issues and concerns, as well as quarterly internal project review meetings. Additionally, Parsons will compile internal lessons learned and provide a forum for dissemination between project team members and distribute to other applicable Parsons project locations.

22 4.10 AUDITS AND SURVEILLANCES

23 **4.10.1 Audit Planning**

4.10.1.1 The QC Manager, or designee(s), will perform audits of the project activities and,
 as required, audits of subcontractors/suppliers in the manner specified in Parsons' corporate
 procedure Q-021, Quality System Audits.

4.10.1.2 The Lead Auditor will prepare the audit plan. The plan will be reviewed and approved by the QC Manager before execution. The audit plan will include the following information:

- Identification of the organization and work areas to be audited;
- Identification of location, times, and dates of duration of the audit;
- Identification of the documents that specify the criteria against which the work will be measured;
- Checklists prepared as a guide during the audit;
- Identification of auditing personnel; and
- Signatures and dates approving the audit.

1 4.10.1.3 The organization to be audited will be notified of the impending audits at least 2 15 days in advance.

3 4.10.2 Audit Execution

A pre-audit briefing and a post-audit briefing will be conducted to inform key management personnel or to confirm results of the audit, including concerns and findings. Daily briefings may be conducted, as needed, to inform the audited organizations of the progress of the audit and potential findings or concerns.

- 8 4.10.3 Audit Reporting
- 9 4.10.3.1 The audit results approved by the Lead Auditor will include the following 10 information:
- Reference to audit plan;

12

13

- Identification of and justification for any differences that occurred between the audit plan and the actual conduct of the audit;
- Synopsis of the audit results;
- Description of nonconformity (identified as findings and observations); and
- Completed audit checklist and documentation (objective evidence) supporting the discovery of the nonconformity.

4.10.3.2 Conditions determined to be in nonconformance with the contract, procedure, or other specified requirements, are identified as findings. Conditions not in nonconformance when first identified, but could lead to nonconformance if left uncorrected, are identified as observations. Formal responses are required for findings only. Corrective action is required for both findings and observations.

- 4.10.3.3 For internal audits, the lead auditor will issue the audit report to the Parsons PM,
 QC Manager, and the responsible Program Manager. For audits of suppliers or subcontractors,
 the Lead Auditor will issue the report to the Parsons PM and QC Manager, who will issue the
 audit report to the audited subcontractors and suppliers.
- 27 4.10.4 Review, Approval, and Verification of Recommended Action Response

4.10.4.1 The recommended corrective action proposed by the management of the
 organization audited in response to the nonconformity will be reviewed and approved by the QC
 Manager. Justification for rejection of the response will be documented by the QC Manager and
 transmitted to the organization providing the response.

4.10.4.2 Management of the organization being audited will report the implementation of
 corrective action to close out the audit nonconformity. The Lead Auditor or the QC Manager
 will verify a closeout action at the time of the next scheduled audit.

4.10.4.3 Verification of closeout action will be documented to ensure the satisfactory closure of the audit nonconformity and will be reported to the Parsons PM and to the management of the organization audited, when applicable.

4.11 QUALITY CONTROL REPORTS

4.11.1 During the project, the QC Manager, or designee, will prepare at least one QC
 report to discuss:

4 5

6

• The periodic assessment and measurement of data accuracy, precision, and completeness; and/or

• Significant QA problems and corrective actions taken.

4.11.2 In addition, the Parsons PM will receive periodic updates concerning QC
 associated with the field activities, laboratory analyses, and the data processing.

9 4.12 DOCUMENTS AND SUBMITTALS

10 **4.12.1 Process**

Documents and submittals prepared for the RI/FS at FTMM will be the result of a collaborative effort by key personnel dedicated to the project. Qualified individuals from each major discipline represented in the deliverable will compose the applicable portion of the document.

15 **4.12.2 Review**

Documents and submittals will be reviewed for technical accuracy and editorial merit by qualified peers and/or the appropriate Technical Director(s). The Parsons PM will collect and retain records of these reviews. The QC Manager will audit the project files to ensure that final reports and deliverables have gone through peer review.

20 **4.12.3 Document Distribution and Retrieval**

4.12.3.1 The current revisions of documents that prescribe technical, management, and
 quality requirements are internally and externally distributed to the applicable project personnel.
 These personnel are responsible for the document's implementation and its verification for
 implementation.

4.12.3.2 The obsolete documents that prescribe obsolete technical and quality requirements are clearly marked and returned to the Parsons PM upon receipt of any revised document. The recipient must also immediately conduct a page change for affected documents by inserting the revised document or slip pages in place of the obsolete. The Parsons PM will maintain a complete list of revisions and will include a summary of the revisions with the document revision submittals.

31 4.13 PERSONNEL SELECTION

4.13.1 Key personnel will be designated by the PM. Those requiring licenses, certification, or other forms of qualifications necessary to perform their work will be selected and evaluated periodically or on each change of task assignment by program management to ensure that their credentials are current to perform the pre-established job description, meeting the contract requirements.

4.13.2 Project personnel performing functions that affect quality will receive, prior to assuming duty, indoctrination and training. The job description, indoctrination, training, and certification will be maintained in the project files. To ensure quality and consistency throughout the duration of the FTMM RI/FS, Parsons will maintain a dedicated group of qualified, trained project personnel to conduct the various tasks associated with this project.

3 4.14 PERSONNEL QUALIFICATIONS AND TRAINING

4 Qualifications and training of project personnel will comply with the requirements specified 5 in the PWS and the APP (**Appendix D**).

6 4.15 CHEMICAL DATA QUALITY MANAGEMENT PLAN

7 The QCP procedures for the Chemical Data Quality Management Plan are discussed in the

8 SAP (Appendix E). Parsons-specific QC procedures will be included in the SAP (Appendix E).

SECTION 5 ENVIRONMENTAL PROTECTION PLAN

5.1 **INTRODUCTION** 3

This EPP has been prepared for the FTMM RI/FS project activities in accordance with the 4 5 PWS. The purpose of the EPP is to establish general procedures for avoiding, minimizing, and mitigating potential impacts to environmental and cultural resources during field activities. 6

5.2 SENSITIVE RESOURCES 7

5.2.1 Threatened and Endangered Species 8

Except for occasional transient species, no federally listed or proposed threatened or 9 endangered flora or fauna are known to exist on FTMM. There was one observance in 1992 of a 10 New Jersey listed endangered species, the clustered sedge. In addition, no federal or state listed 11 species were observed during the baseline ecological evaluation site visit conducted on the MP 12 and CWA on September 15, 2009 (Shaw, 2011). Due to the developed, urbanized nature of the 13 RI/FS sites and the nature of the work to be performed, no listed threatened and endangered 14 species are anticipated to be encountered or adversely impacted by the RI effort. 15

5.2.2 Sensitive Environments 16

17 5.2.2.1 Areas of wetlands are present on both the MP and CWA, with both estuarine and fresh water wetlands present on the MP. The USFWS National Wetland Inventory maps have 18 19 designated wetland areas at the MP and CWA. Areas along Oceanport Creek and Parkers Creek 20 are designated estuarine and marine wetlands or open waters; areas along Mill Creek, Husky 21 Brook, Lafetra and Shrewsbury Creeks are fresh water emergent or forested/shrub wetlands.

22 5.2.2.2 RI work to be performed at the M-2 Landfill Site may occur in designated wetland areas or other areas considered to be important ecological places. The RI site is vacant 23 however its surrounding areas are developed and urbanized. The RI team will be cautioned to 24 25 avoid disturbance or impact to the wetland area during the RI activities.

5.2.3 Cultural and Archaeological Resources 26

The RI site does not contain any registered or otherwise recognized cultural or 27 archaeological resources. Nevertheless, if an archaeological remnant is discovered or suspected 28 during the RI effort, activities in that area will be halted. It is Parsons' policy to note in the field 29 log the location of any archaeologically significant item found by the field team, and to notify 30 USACE and FTMM personnel. Photographs of any archaeological or cultural item found may 31 be included in the RI/FS report. 32

5.2.4 Water Resources 33

34

A discussion of water resources at FTMM can be found in subsections 1.5.4 and 1.5.6. 5.2.5 Coastal Zones 35

The RI site is not located within a Coastal Zone Management Area because it is not located 36 on a tidally influenced shoreline. Therefore, the site is also not within a National Marine 37 Sanctuary, Marine Protected Area, or the National Estuarine Research Reserve System. 38

1 5.2.6 Waste Disposal Sites

Based on the history and usage of the RI sites, there are no known munitions storage areas at
 these locations. No use of chemical warfare material has been reported at the sites.

4 5.3 MITIGATION PROCEDURES

5 Various measures will be used to mitigate the environmental impacts of RI field activities. 6 The following general measures will be taken during onsite activities:

7 8	•	Site-specific training will be given on awareness of nearby wetland areas (FTMM-02);
9 10	•	Areas that have been disturbed as a result of field activities will be restored to the previously existing condition to the extent practicable;
11	•	No burning activities will take place during this project;
12 13 14	•	Emissions sources will consist of any motorized equipment used onsite, including crew vehicles, generators, and drilling rigs. Vehicles and equipment will be in good working order and will meet applicable vehicle emissions requirements; and
15 16 17	•	Fueling for small equipment, such as generators, will be performed onsite (via small volume fuel containers). If a leak of fuel or other fluid such as hydraulic or transmission fluid occurs in the field, the following should be implemented:
18 19		- Promptly berm the area with soil so that the fuel or fluid does not spread along the ground surface;
20		- Apply oil-absorbing material such as sawdust or kitty litter to the spill; and
21 22 23		- Report the spill to the Site Superintendent and follow instructions for clean up. It is anticipated that this will involve digging up and drumming contaminated soil followed by its proper disposal.

SECTION 6 PROPERTY MANAGEMENT PLAN

Government furnished equipment will not be used during the RI. Therefore, a Property Management Plan will not be required and this section serves as a placeholder only.

1	SECTION 7
2	REFERENCES
3	AECOM. 2012. Draft Final Vapor Intrusion Site Investigation Report, Main Post and Charles
4	Wood Area, OACSIM – U.S. Army Fort Monmouth, Oceanport, New Jersey. Prepared
5	for the U.S. Army Corps of Engineers, Baltimore District. August.
6	ATC. 2000. <i>Remedial Action Work Plan, Landfill M-5, Main Post, Fort Monmouth, New Jersey.</i>
7	Prepared for United States Army Fort Monmouth Directorate of Public Works, February.
8	ATC. 2000. <i>Remedial Action Work Plan, Landfill M-3, Main Post, Fort Monmouth, New Jersey.</i>
9	Prepared for United States Army Fort Monmouth Directorate of Public Works, July.
10	ATC. 2000. Remedial Action Work Plan, Landfill M-8, Main Post, Fort Monmouth, New Jersey.
11	Prepared for United States Army Fort Monmouth Directorate of Public Works,
12	September.
13 14	EDAW, 2008. <i>Fort Monmouth Reuse and Redevelopment Plan.</i> Prepared for Fort Monmouth Economic Revitalization Planning Authority, September.
15	Groundwater & Environmental Services, Inc. (GES). 1999. Remedial Action Work Plan
16	Addendum, Building 699, Main Post Area, Fort Monmouth, New Jersey. Prepared for the
17	Fort Monmouth Directorate of Public Works. June 10.
18 19 20	Meisler, H., J.A. Miller, L.L. Knobel, and R.L. Wait. 1988. "Region 22, Atlantic and Eastern Gulf Coastal Plan." <i>In: Hydrogeology: The Geology of North America</i> , W. Back, J.S. Rosenhein, and P.R. Seaber, editors. Vol. 0-2. pp. 209-218.
21	Parsons. 2012. Preliminary Draft Project Management Plan for Remedial Investigation/
22	Feasibility Study/Decision Documents, Fort Monmouth, Oceanport, Monmouth County,
23	New Jersey. Revision 0. October.
24	Shaw. 2012. Final Fort Monmouth Main Post and Charles Wood Area Baseline Ecological
25	Evaluation Report, U. S. Army Garrison Fort Monmouth, Fort Monmouth, New Jersey
26	U.S. Prepared for the Army Corps of Engineers, Baltimore District. May.
27	USDA. 2008. Soil Survey of Monmouth County, New Jersey.
28	USEPA. 1989. Risk Assessment Guidance for Superfund. Volume I, Human Health Evaluation
29	Manual (Part A). Interim final. U.S. Environmental Protection Agency, Office of
30	Emergency and Remedial Response. EPA/540/1-89/002. December 1989.
31 32	USEPA. 1992. <i>Guidance for Performing Site Inspections Under CERCLA</i> , Interim Final. Office of Emergency and Remedial Response. EPA540-R-92-021. September.
33 34	USEPA. 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process. EPA/240/B-06/001. February.
35	U.S. Army Office of the Assistant Chief of Staff for Installation Management. 2012. M-2
36	Landfill (FTMM-02) Remedial Action Progress Report, U.S. Army Garrison Fort
37	Monmouth, Main Post, Fort Monmouth, New Jersey. March.

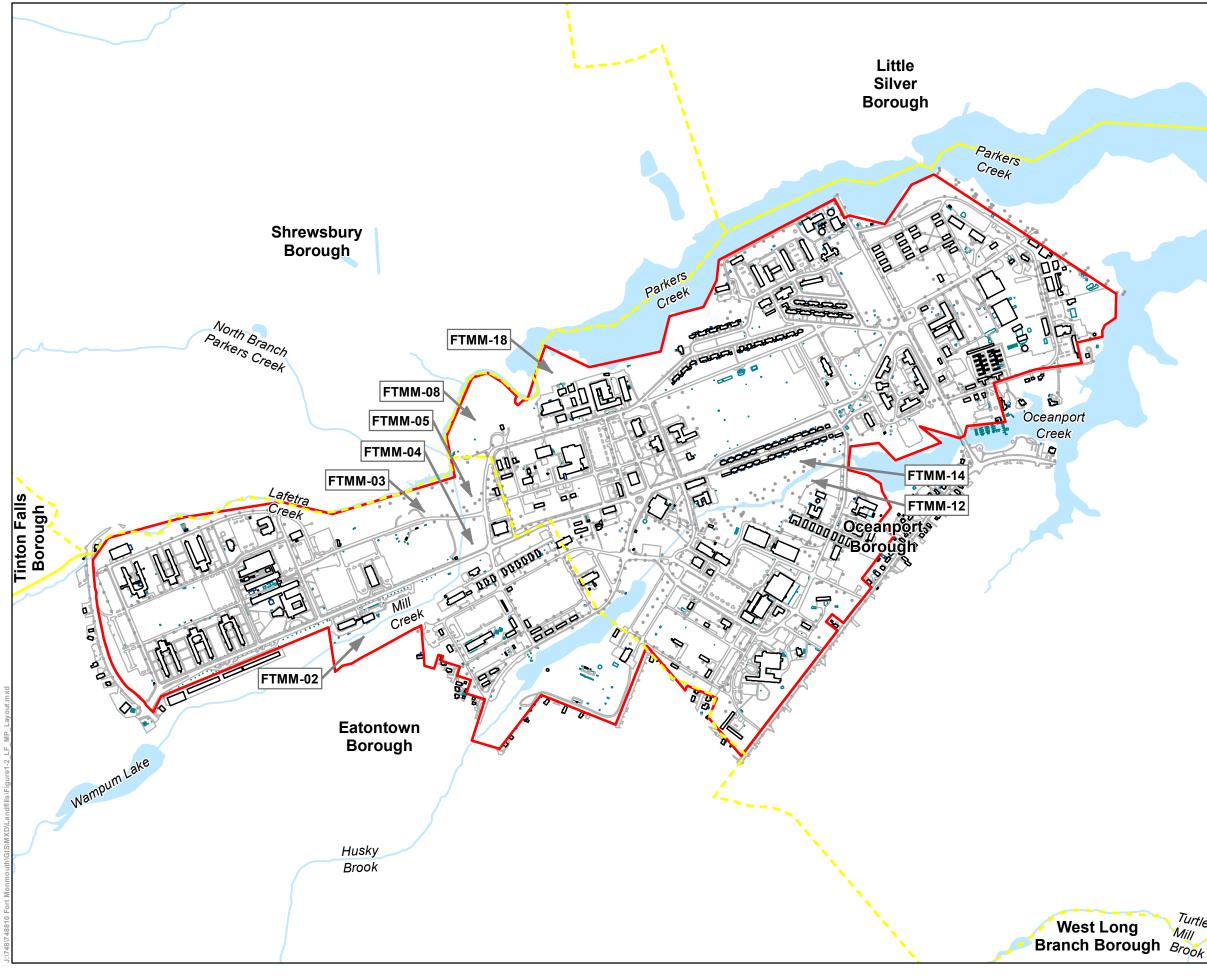
U.S. Army Office of the Assistant Chief of Staff for Installation Management. 2012. M-8 Landfill (FTMM-08) Remedial Action Progress Report, U.S. Army Garrison Fort 2 3 Monmouth, Main Post, Fort Monmouth, New Jersey. April. 4 VEETech. 2009. M-2 Landfill Site (FTMM-02) Remedial Action Progress Report, U.S. Army Garrison Fort Monmouth, Main Post, Fort Monmouth, New Jersey. January. 5 6 VEETech. 2010. M-2 Landfill Site (FTMM-02) Remedial Action Progress Report, U.S. Army 7 Garrison Fort Monmouth, Main Post, Fort Monmouth, New Jersey. September. Versar. 2001. Remedial Investigation Report and Remedial Action Workplan, M-2 Landfill. 8 Prepared for: United States Army Fort Monmouth Directorate of Public Works. January. 9 Versar. 2003. Remedial Investigation Report, M-18 Landfill Site Fort Monmouth, New Jersey. 10 11 Prepared for: United States Army Fort Monmouth Directorate of Public Works, October 1. 12 13 Versar. 2003. Remedial Investigation Report for Near-Surface Soils, M-12 Landfill Site Fort Monmouth, New Jersey. Prepared for: United States Army Fort Monmouth Directorate 14 of Public Works, October 15. 15 Versar. 2004. Remedial Investigation Report for Near-Surface Soils, M-2 Landfill Site Fort 16 Monmouth, New Jersey. Prepared for: United States Army Fort Monmouth Directorate 17 of Public Works, February 23. 18 19 Versar. 2004. Remedial Investigation Report for Near-Surface Soils, M-3 Landfill Site Fort Monmouth, New Jersey. Prepared for: United States Army Fort Monmouth Directorate 20 21 of Public Works, February 23. Versar. 2004. Remedial Investigation Report, CW-3A Landfill Site Fort Monmouth, New Jersey. 22 Prepared for: United States Army Fort Monmouth Directorate of Public Works, March 4. 23 Versar. 2004. Remedial Investigation Report for Near-Surface Soils, M-4 Landfill Site Fort 24 Monmouth, New Jersey. Prepared for: United States Army Fort Monmouth Directorate 25 26 of Public Works, March 9. Versar. 2004. Remedial Investigation Report for Near-Surface Soils, M-5 Landfill Site Fort 27 Monmouth, New Jersey. Prepared for: United States Army Fort Monmouth Directorate 28 of Public Works, March 15. 29 30 Versar. 2004. Remedial Investigation Report for Near-Surface Soils, M-8 Landfill Site Fort Monmouth, New Jersey. Prepared for: United States Army Fort Monmouth Directorate 31 of Public Works, March 16. 32 Versar. 2004. Remedial Investigation Report for Near-Surface Soils, M-14 Landfill Site Fort 33 Monmouth, New Jersey. Prepared for: United States Army Fort Monmouth Directorate 34 of Public Works, March 17. 35 Versar. 2004. Remedial Investigation Report for Near-Surface Soils, M-18 Landfill Site Fort 36 Monmouth, New Jersey. Prepared for: United States Army Fort Monmouth Directorate 37 of Public Works, March 17. 38

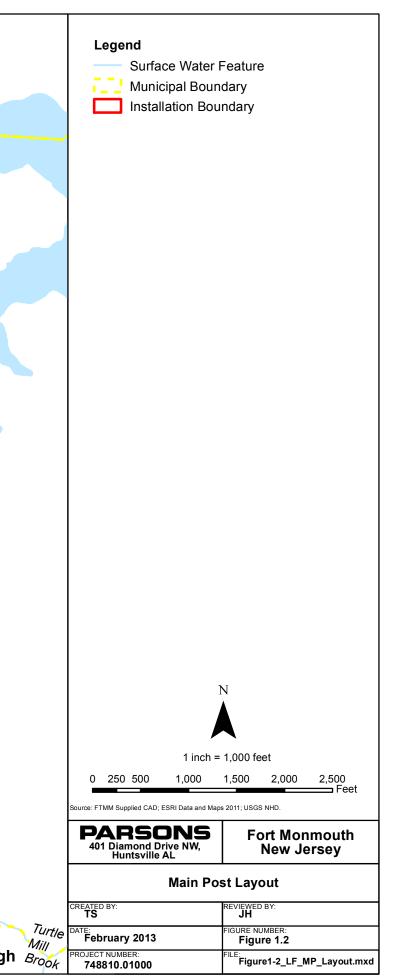
1	Versar. 2005. Remedial Investigation Report, M-4 Landfill Site Fort Monmouth, New Jersey.
2	Prepared for: United States Army Fort Monmouth Directorate of Public Works,
3	January 6.
4 5 6	Versar. 2005. <i>Remedial Investigation Report, CW-3A Landfill Site Fort Monmouth, New Jersey.</i> Prepared for: United States Army Fort Monmouth Directorate of Public Works, January 7.

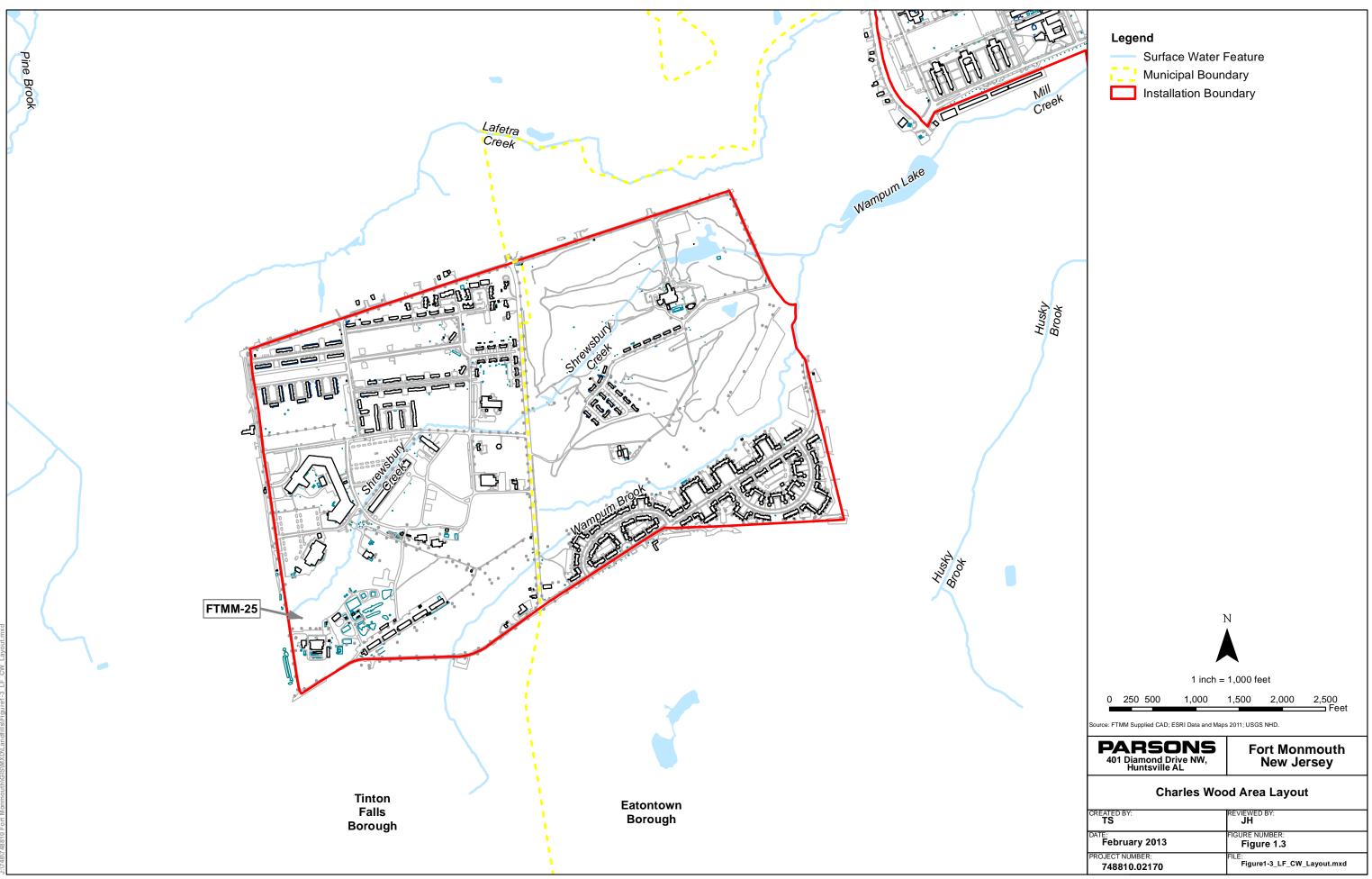
WESTON (Roy F. Weston, Inc.). 1995. Site Investigation Report - Main Post and Charles
 Wood Areas, Fort Monmouth, New Jersey. December 1995. U.S. Army. 2008. Final
 U.S. Army BRAC 2005 Site Investigation Report, Fort Monmouth Final. 21 July.

1		FIGURES
2		
3	Figure 1.1	Fort Monmouth Location
4	Figure 1.2	Main Post Layout
5	Figure 1.3	Charles Wood Area Layout
6	Figure 3.1	Preliminary Conceptual Site Model Diagram for FTMM-02
7	Figure 3.2	Proposed RI Soil Borings at FTMM-02

Final Landfill Feasibility Study Work Plan




Fort Monmouth, BRAC 05 Facility Contract Number W912DY-09-D-0062, Task Order 0012



Final Landfill Feasibility Study Work Plan

Final Figure 3.1 Feasibility Study Work Plan

Figures

--

--

--

--

--

--

--

PRELIMINARY CONCEPTUAL SITE MODEL DIAGRAM FOR FTMM-02

Site Name:

Fort Monmouth, New Jersey, FTMM-02 (M2 Landfill Site)

Completed By:

Cindy Conway

Date Completed: February 07, 2013

PATHWAY SOURCE RECEPTORS SOURCE RELEASE **EXPOSURE EXPOSURE HUMAN & ECOLOGICAL** PRIMARY SOURCE **MECHANISM** ROUTES **MEDIA** MEDIA RECEPTORS **CURRENT/FUTURE Recreational Users** Intrusive Worker Non-intrusive Site Visitors, Ecologica Residents Workers Ingestion as DW • • ---Surface Water/ Surface Water/ Incidental Ingestion ------0 Sediment Sediment Dermal Contact -----Uptake by Ingestion of Biota Ο Ο Ο ----biota Domestic and No source of biota for Industrial Waste human ingestion Erosion/ runoff • 0 Incidental Ingestion --0 Surface Soil Surface Soil • Dermal Contact • • --(<2 ft) (<2 ft) Inhalation (dust) • • • -----Inhalation (volatiles) • • ---Incidental Ingestion --• 0 Ο Ο Subsurface Subsurface Dermal Contact • Ο --Soil (> 2 ft) Soil (> 2 ft)Inhalation (dust) • 0 Ο ----Inhalation (volatiles) 0 • • ----0 Ο Ο Ingestion as DW --Ο Incidental Ingestion Ο ---Groundwater Leaching 0 Ο • Dermal Contact ----Inhalation (vapor ---• intrusion) Groundwater not a source of drinking water M2 landfill site will not be transferred

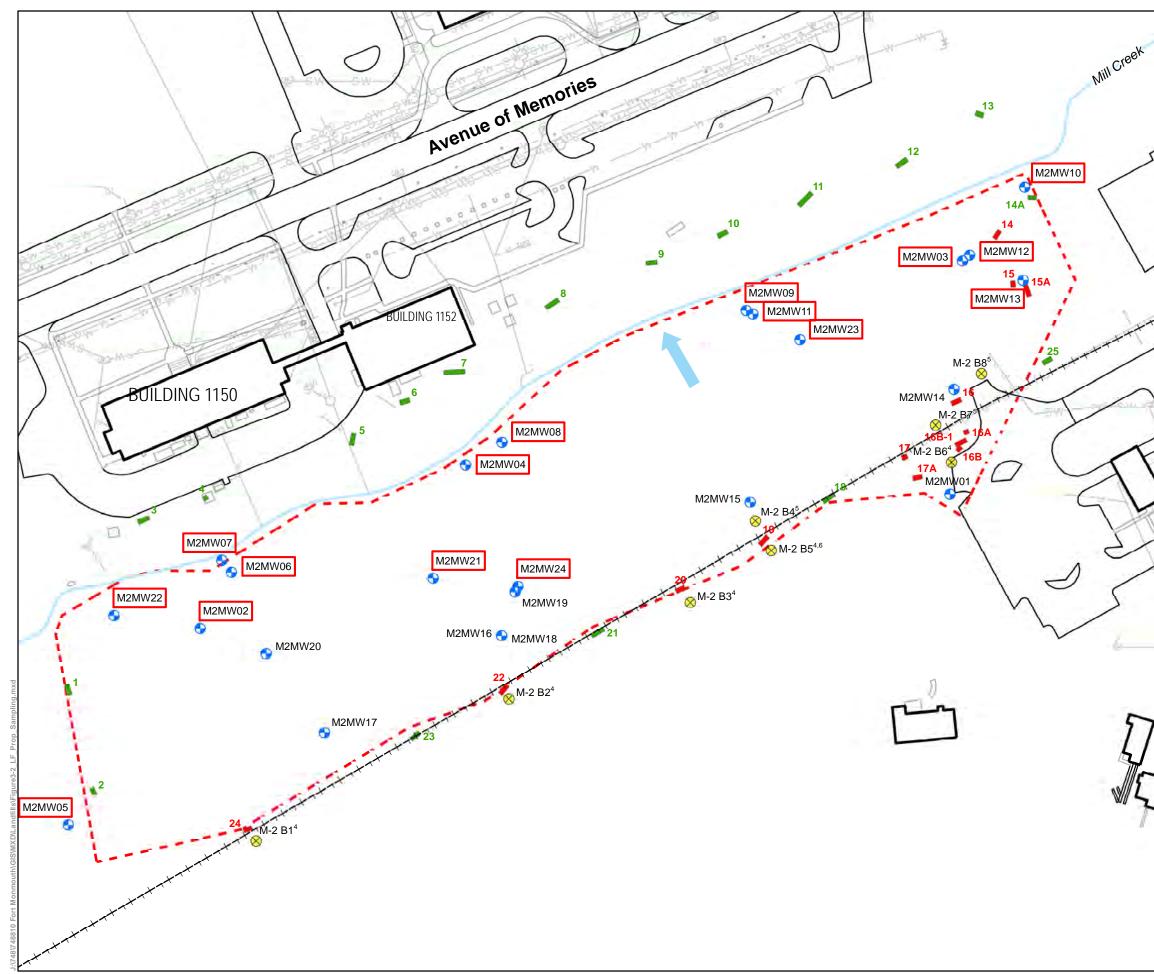
F-4

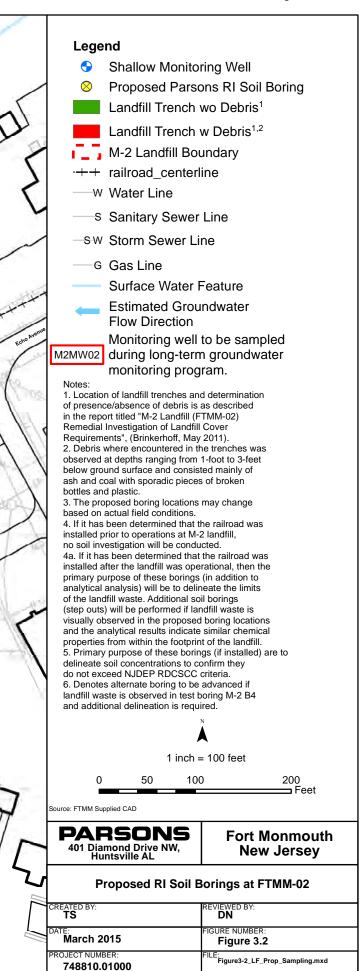
March 2015

reason)

Incomplete Pathway Receptor not Present

Pathway not present (with


Potentially Complete Pathway


for Residential use

Ο

--⊗

Final Landfill Feasibility Study Work Plan

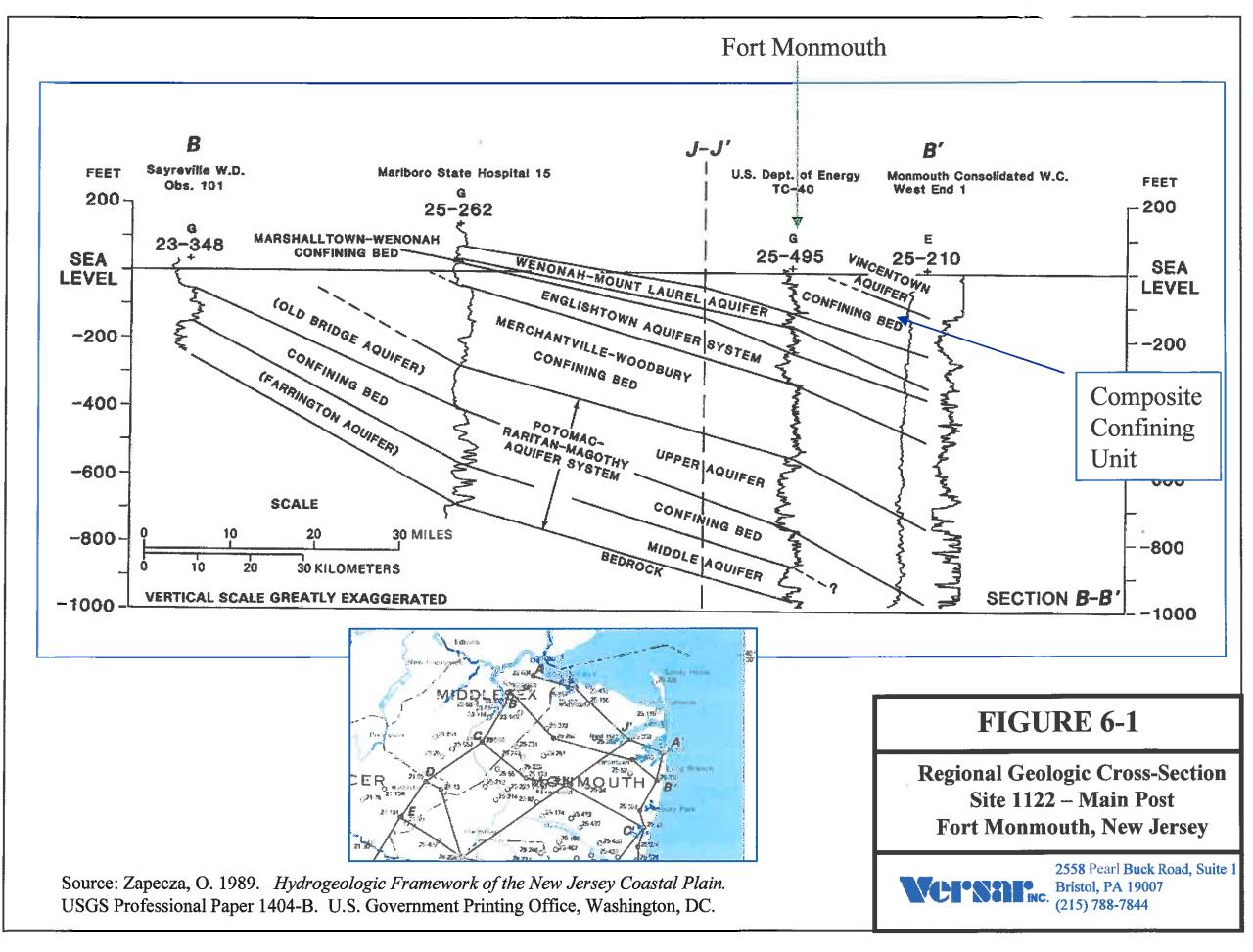
1		APPENDICES
2		
3	Appendix A	Performance Work Statement (included by reference only)
4	Appendix B	Field Forms (included by reference only)
5	Appendix C	Historical Information
6	Appendix D	Accident Prevention Plan (included by reference only)

7 Appendix E Sampling and Analysis Plan (included by reference only)

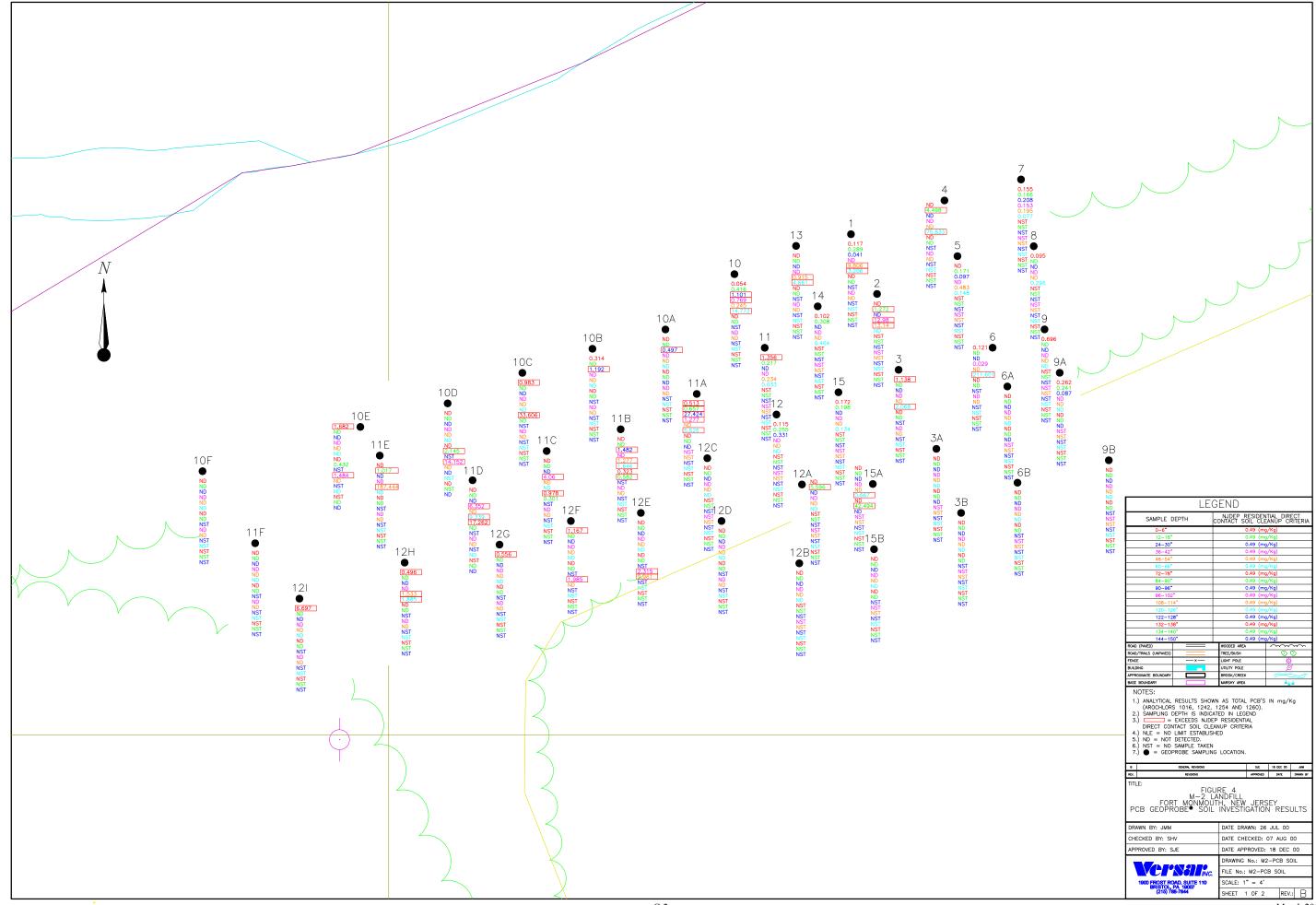
1	APPENDIX A
2	PERFORMANCE WORK STATEMENT
3	
4	(This is a placeholder only; included as reference only)

2

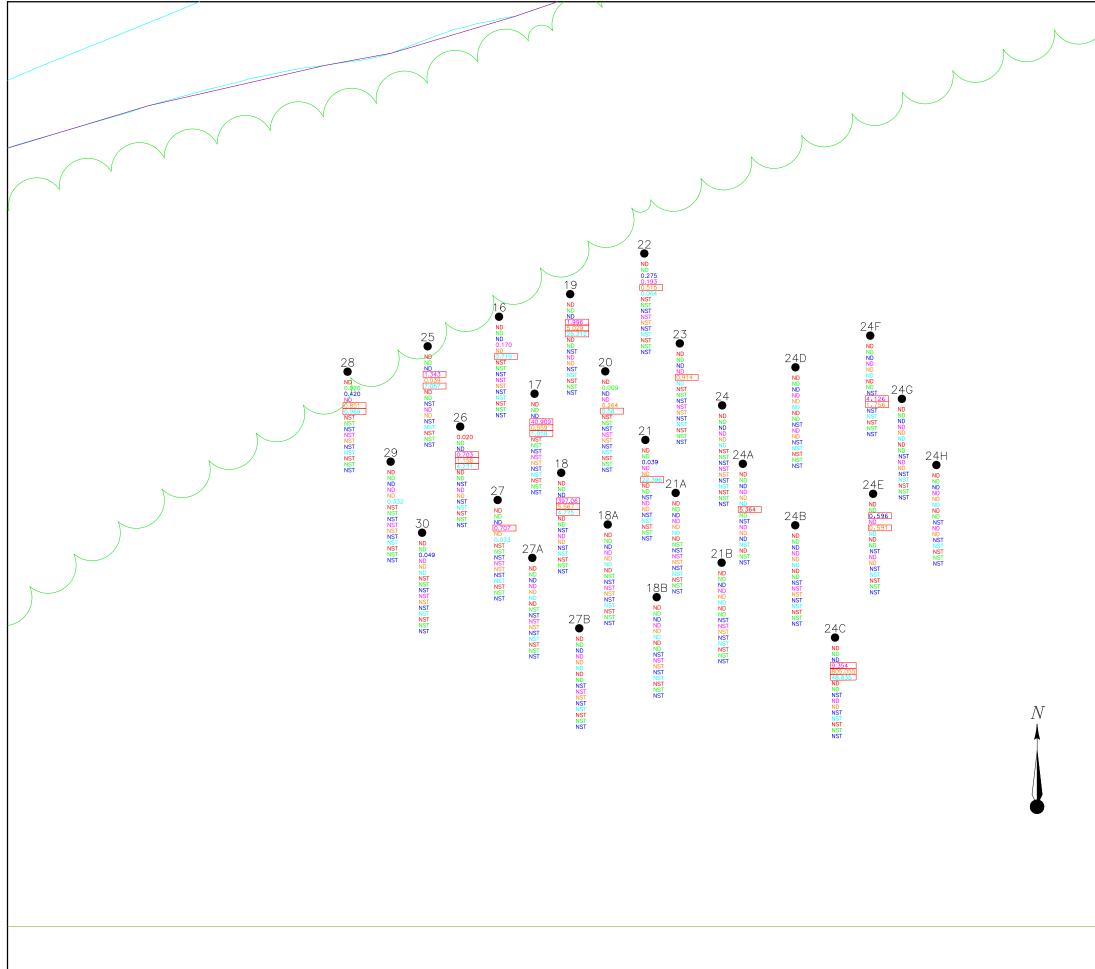
3


4

5


FIELD FORMS

(This is a placeholder only; field forms are provided in the Sampling and Analysis Plan)


1	APPENDIX C
2	HISTORICAL INFORMATION

*

	LEGEND						
	LE	0 11 10					
SAMPLE I	DEPTH	NJDEP R CONTACT SC	NJDEP RESIDENTIAL DIRECT DNTACT SOIL CLEANUP CRITERIA				
0-6"			0.49 (mg/Kg)				
12-18			0.49 (mg/Kg)				
24-30).49 (mg).49 (mg	/Kg) /Kg)			
48-54*				/Kg) /Kg)			
60-66*				/Kg)			
72-78	•).49 (mg				
84-90*		(/Kg)			
90-96).49 (mg	/Kg)			
96-102				/Kg)			
108-11				/Kg)			
122-12				/Kg)			
120-12				/Kg) /Kg)			
132-13			· · · · · · · · · · · · · · · · · · ·	/Kg)			
144-15				/Kg)			
ROAD (PAVED)		WOODED AREA			\sim		
ROAD/TRAILS (UNPAVED)		TREE/BUSH		Ó	©		
FENCE	×	LIGHT POLE		÷.			
BUILDING		UTILITY POLE		ې ر	۲ ر		
APPROXIMATE BOUNDARY		BROOK/CREEK		-7	\sim		
BASE BOUNDARY NOTES:		MARSHY AREA		<u> </u>	4		
	RESULTS SHOW			IN mg/	Kg		
(AROCHLOR 2.) SAMPLING 3.) = DIRECT COI 4.) NLE = NO 5.) ND = NOT 6.) NST = NO	S 1016, 1242, DEPTH IS INDIC EXCEEDS NJDE NTACT SOIL CLE LIMIT ESTABLIS	1254 AND ATED IN LEGI EP RESIDENTI ANUP CRITEF HED	1260). END AL	IN mg/l	Kg		
(AROCHLOR 2.) SAMPLING 3.) = DIRECT COI 4.) NLE = NO 5.) ND = NOT 6.) NST = NO	S 1016, 1242, DEPTH IS INDIC EXCEEDS NJDE NTACT SOIL CLE LIMIT ESTABLIS DETECTED. SAMPLE TAKEN	1254 AND ATED IN LEGI EP RESIDENTI ANUP CRITEF HED	1260). END AL	IN mg/l	Kg		
(AROCHLOR 2.) SAMPLING 3.) ■ = = DIRECT COI 4.) NLE = NO 5.) ND = NOT 6.) NST = NO 7.) ● = GEO	S 1016, 1242, DEPTH IS INDIC EXCEEDS NJDE VTACT SOIL CLE LIMIT ESTABLIS DETECTED. SAMPLE TAKEN PROBE SAMPLIN	1254 AND ATED IN LEGI EP RESIDENTI ANUP CRITEF HED	1260). END AL RIA				
(AROCHLOR 2.) SAMPLING 3.) □ = DIRECT COI 4.) NLE = NO 5.) ND = NOT 6.) NST = NO 7.) ● = GEO • • • • • • • •	S 1016, 1242, DEPTH IS INDIC EXCEEDS NUD VTACT SOIL CLE LIMIT ESTABLIS DETECTED. SAMPLE TAKEN PROBE SAMPLIN волям. якнож якнож БІСЦ М—2 1	1254 AND ATED IN LEGI EP RESIDENTI ANUP CRITEF HED	1260). END AL RIA	18 DEC 00 DATE	JUM DRAM BY		
(AROCHLOR 2.) SAMPLING 3.) □ = DIRECT COI 4.) NLE = NO 5.) ND = NOT 6.) NST = NO 7.) ● = GEO • • • • • • • •	S 1016, 1242, DEPTH IS INDIC EXCEEDS NUD VTACT SOIL CLE LIMIT ESTABLIS DETECTED. SAMPLE TAKEN PROBE SAMPLIN волям. якнож якнож БІСЦ М—2 1	1254 AND ATED IN LEG PRESIDENTI ANUP CRITEF HED IG LOCATION.	JERSGATION	IN DEC 00 DATE SEY N RES	JUM DRAM BY		
(4ROCHLOR 2) SAMPLING 3) == = DIRECT CO 4) NLE = NO 5) ND = NO 6) NST = NO 7) ● = GEO TITLE: PCB GEOPF	S 1016, 1242, EPTH IS INDIC EXCEEDS NUDIC TRACT SOLL CLE LIMIT ESTABLIS DETECTED SAMPLE TAKEN PROBE SAMPLIN CONTRACT AND REMAK MONIMOU ROBE SOLL SOLL SOLL SOLL SOLL SOLL SOLL SOL	1254 AND ATED IN LEG P. RESIDENTI ANUP CRITER HED IG LOCATION.	JERS GATION WN: 26	18 000 00 DATE SEY N RES JUL 00	Jun Drawn Br ULTS		
(4ROCHLOR 2) SAMPLING 3) INE = NO 5) NE = NO 5) NE = NO 7) ● = GEO TITLE: PCB GEOPF DRAWN BY: JMM	S 1016, 1242, DEPTH IS INDIC EXCEEDS NJDIC EXCEEDS NJDIC LIMIT ESTABLIS DETECTED. SAMPLE TAKEN PROBE SAMPLIN OBERM. RIVIDOS REMOVE FIGU M-2 L T MONMOU ROBE SOIL	1254 AND " ATED IN LEGI PRESIDENTI ANUP CRITEF HED IG LOCATION. JRE 4B ANDFILL TH, NEW - INVESTIC DATE DRA	JERS GATION WN: 26 CKED:	18 080 00 DATE SEY N RES JUL 00 D7 AUG	Juny Davan Br ULTS 00		
(4ROCHLOR 2) SAMPLING 3) === DIRECT CO 4) NLE = NO 5) ND = NO 6) NST = NO 7) ● = GEO TTTLE: PCB GEOPF DRAWN BY: JMM CHECKED BY: SI APPROVED BY: SI	S 1016, 1242, DEPTH IS INDIC EXCEEDS NUDIC TRACT SOLL CLE LIMIT ESTABLIS DETECTED SAMPLE TAKEN PROBE SAMPLE TAKEN PROBE SAMPLE TAKEN FIGL M-2 L TMONMOL COBE SOLL	1254 AND ATED IN LEG PRESIDENTI ANUP CRITEFIED IG LOCATION. JRE 4B ANDFILL JTH, NEW - INVESTIC DATE CRA DATE CRA DATE CRA	JERS GATION WN: 26 ROVED:	18 080 00 DWTE SEY N RES JUL 00 D7 AUG 18 DEC	June DRAWK BY ULTS 00 00		
(4ROCHLOR 2) SAMPLING 3) = DIRECT COI 4) NLE = NO 5) ND = NOT 6) NST = NO 7) ● = GEO 100 100 100 100 100 100 100 100 100 10	S 1016, 1242, EPTH IS INDIC EXCEEDS NUDE TRACT SOLI CLE LIMIT ESTABLIS DETECTED. SAMPLE TAKEN PROBE SAMPLIN COMMANDE REMOVE REMOVE REMOVE REMOVE REMOVE SOLICITIES REMOVE REMOVE REMOVE SOLICITIES REMOVE REMOVE REMOVE REMOVE SOLICITIES REMOVE REMOVE REMOVE SOLICITIES REMOVE REMOVE SOLICITIES REMOVE REMOVE REMOVE SOLICITIES REMOVE REMOVE REMOVE REMOVE SOLICITIES REMOVE REMOVE REMOVE SOLICITIES REMOVE REMOVE REMOVE SOLICITIES REMOVE REM	1254 AND ATED IN LEG PRESIDENTI ANUP CRITER HED IG LOCATION. IG LOCATION. JRE 4B AND FILL JRE 4B AND FILL UTH NEW DATE DRA DATE CHE DATE CHE DATE CHE DATE APP DRAWING TILE NO.:	JERS GATION WN: 26 CKED: ROVED: M2-PC	18 080 00 0475 5EY N RES JUL 00 07 AUG 18 DEC 2-PCB S	June DRAWK BY ULTS 00 00		
(4ROCHLOR 2) SAMPLING 3) = DIRECT COI 4) NLE = NO 5) ND = NOT 6) NST = NO 7) ● = GEO 100 100 100 100 100 100 100 100 100 10	S 1016, 1242, DEPTH IS INDIC EXCEEDS NUDIC TRACT SOLL CLE LIMIT ESTABLIS DETECTED SAMPLE TAKEN PROBE SAMPLE TAKEN PROBE SAMPLE TAKEN FIGL M-2 L TMONMOL COBE SOLL	1254 AND ATED IN LEG PRESIDENTI ANUP CRITEFIED IG LOCATION. JRE 4B ANDFILL JTH, NEW - INVESTIC DATE CRA DATE CRA DATE CRA	JERS GATION WN: 26 CKED: ROVED: M2-PC	18 080 00 0475 5EY N RES JUL 00 07 AUG 18 DEC 2-PCB S	June DRAWK BY ULTS 00 00		

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Leve	l (mg/Kg)*			0.49	0.49	0.49	0.49	0.49
1	0-6"	4281.03	2/17/99	0.063	ND	ND	0.054	0.117
1	12-18"	4281.04	2/17/99	0.053	ND	ND	0.236	0.289
1	24-30"	4281.05	2/17/99	ND	ND	ND	0.041	0.041
1	36-42"	4281.06	2/17/99	ND	ND	ND	ND	ND
1	48-54"	4281.07	2/17/99	8.669	ND	ND	1.137	9.806
1	60-66"	4281.08	2/17/99	ND	ND	ND	3.206	3.206
1	72-78"	5119.25	1/24/00	ND	ND	ND	ND	ND
1	84-90"	5119.26	1/24/00	ND	ND	ND	ND	ND
1	96-102"	5119.27	1/24/00	ND	ND	ND	ND	ND
1	108-114"	5119.28	1/24/00	ND	ND	ND	ND	ND
2	0-6"	4281.09	2/17/99	ND	ND	ND	ND	ND
2	12-18"	4281.10	2/17/99	1.162	ND	ND	0.110	1.272
2	24-30"	4281.11	2/17/99	ND	ND	ND	ND	ND
2	36-42"	4281.12	2/17/99	12.481	ND	ND	0.499	12.980
2	48-54"	4281.13	2/17/99	12.413	ND	ND	0.727	13.140
2	60-66"	4281.14	2/17/99	ND	ND	ND	ND	ND
3	0-6"	4281.15	2/17/99	0.967	ND	ND	0.171	1.138
3	12-18"	4281.16	2/17/99	ND	ND	ND	ND	ND
3	24-30"	4281.17	2/17/99	ND	ND	ND	ND	ND
3	36-42"	4281.18	2/17/99	ND	ND	ND	ND	ND
3	48-54"	4281.19	2/17/99	ND	ND	ND	ND	ND
3	60-66"	4281.20	2/17/99	1.935	ND	ND	0.133	2.068
3	72-78"	5119.29	1/24/00	ND	ND	ND	ND	ND
3	84-90"	5119.30	1/24/00	ND	ND	ND	ND	ND
3	96-102"	5119.31	1/24/00	ND	ND	ND	ND	ND
3	108-114"	5119.32	1/24/00	ND	ND	ND	ND	ND
3A	0-6"	4890.28	10/27/99	ND	ND	ND	ND	ND
3A	12-18"	4890.29	10/27/99	ND	ND	ND	ND	ND
3A	24-30"	4890.30	10/27/99	ND	ND	ND	ND	ND
3A	36-42"	4890.31	10/27/99	ND	ND	ND	ND	ND
3A	48-54"	4890.32	10/27/99	ND	ND	ND	ND	ND
3A	60-66"	4890.33	10/27/99	ND	ND	ND	ND	ND
3A	72-78"	4890.34	10/27/99	ND	ND	ND	ND	ND
3A	84-90"	4890.35	10/27/99	ND	ND	ND	ND	ND
3A	90-96"	4890.36	10/27/99	ND	ND	ND	ND	ND
3B	0-6"	4963.20	11/23/99	ND	ND	ND	ND	ND
3B	12-18"	4963.21	11/23/99	ND	ND	ND	ND	ND
3B	24-30"	4963.22	11/23/99	ND	ND	ND	ND	ND
3B	36-42"	4963.23	11/23/99	ND	ND	ND	ND	ND
3B	48-54"	4963.24	11/23/99	ND	ND	ND	ND	ND
3B	60-66"	4963.25	11/23/99	ND	ND	ND	ND	ND
3B	72-78"	4963.26	11/23/99	ND	ND	ND	ND	ND
3B	84-90"	4963.27	11/23/99	ND	ND	ND	ND	ND
4	0-6"	4281.21	2/17/99	ND	ND	ND	ND	ND
4	12-18"	4281.22	2/17/99	4.219	ND	ND	0.279	4.498
4	24-30"	4281.23	2/17/99	ND	ND	ND	ND	ND
4	36-42"	4281.24	2/17/99	ND	ND	ND	ND	ND

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
4	48-54"	4281.25	2/17/99	ND	ND	ND	ND	ND
4	60-66"	4281.26	2/17/99	65.402	ND	ND	10.431	75.833
4	72-78"	5119.33	1/24/00	ND	ND	ND	ND	ND
4	84-90"	5119.34	1/24/00	ND	ND	ND	ND	ND
4	96-102"	5119.35	1/24/00	ND	ND	ND	ND	ND
4	108-114"	5119.36	1/24/00	ND	ND	ND	ND	ND
5	0-6"	4285.02	2/19/99	ND	ND	ND	ND	ND
5	12-18"	4285.03	2/19/99	0.117	ND	ND	0.054	0.171
5	24-30"	4285.04	2/19/99	0.050	ND	ND	0.047	0.097
5	36-42"	4285.05	2/19/99	ND	ND	ND	ND	ND
5	48-54"	4285.06	2/19/99	ND	ND	ND	0.483	0.483
5	60-66"	4285.07	2/19/99	ND	ND	ND	0.148	0.148
6	0-6"	4285.08	2/19/99	0.081	ND	ND	0.040	0.121
6	12-18"	4285.09	2/19/99	ND	ND	ND	ND	ND
6	24-30"	4285.10	2/19/99	ND	ND	ND	ND	ND
6	36-42"	4285.11	2/19/99	ND	ND	ND	0.029	0.029
6	48-54"	4285.12	2/19/99	ND	ND	ND	ND	ND
6	60-66"	4285.13	2/19/99	208.421	ND	ND	3.180	211.601
6	72-78"	5119.37	1/24/00	ND	ND	ND	ND	ND
6	84-90"	5119.38	1/24/00	ND	ND	ND	ND	ND
6	96-102"	5119.39	1/24/00	ND	ND	ND	ND	ND
6	108-114"	5119.40	1/24/00	ND	ND	ND	ND	ND
6A	0-6"	4890.37	10/27/99	ND	ND	ND	ND	ND
6A	12-18"	4890.38	10/27/99	ND	ND	ND	ND	ND
6A	24-30"	4890.39	10/27/99	ND	ND	ND	ND	ND
6A	36-42"	4890.40	10/27/99	ND	ND	ND	ND	ND
6A	48-54"	4890.41	10/27/99	ND	ND	ND	ND	ND
6A	60-66"	4890.42	10/27/99	ND	ND	ND	ND	ND
6A	72-78"	4890.43	10/27/99	ND	ND	ND	ND	ND
6A	84-90"	4890.44	10/27/99	ND	ND	ND	ND	ND
6A	90-96"	4890.45	10/27/99	ND	ND	ND	ND	ND
6B	0-6"	4963.11	11/23/99	ND	ND	ND	ND	ND
6B	12-18"	4963.12	11/23/99	ND	ND	ND	ND	ND
6B	24-30"	4963.13	11/23/99	ND	ND	ND	ND	ND
6B	36-42"	4963.14	11/23/99	ND	ND	ND	ND	ND
6B	48-54"	4963.15	11/23/99	ND	ND	ND	ND	ND
6B	60-66"	4963.16	11/23/99	ND	ND	ND	ND	ND
6B	72-78"	4963.17	11/23/99	ND	ND	ND	ND	ND
6B	84-90"	4963.18	11/23/99	ND	ND	ND	ND	ND
7	0-6"	4285.14	2/19/99	0.108	ND	ND	0.047	0.155
7	12-18"	4285.15	2/19/99	0.152	ND	ND	0.014	0.166
7	24-30"	4285.16	2/19/99	ND	ND	ND	0.208	0.208
7	36-42"	4285.17	2/19/99	0.115	ND	ND	0.038	0.153
7	48-54"	4285.18	2/19/99	0.153	ND	ND	0.042	0.195
7	60-66"	4285.19	2/19/99	0.046	ND	ND	0.031	0.077
8	0-6"	4290.02	2/22/99	0.047	ND	ND	0.048	0.095
8	12-18"	4290.03	2/22/99	ND	ND	ND	ND	ND

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
8	24-30"	4290.04	2/22/99	ND	ND	ND	ND	ND
8	36-42"	4290.05	2/22/99	ND	ND	ND	ND	ND
8	48-54"	4290.06	2/22/99	ND	ND	ND	ND	ND
8	60-66"	4290.07	2/22/99	ND	ND	ND	0.296	0.296
9	0-6"	4290.08	2/22/99	0.465	ND	ND	0.231	0.696
9	12-18"	4290.09	2/22/99	ND	ND	ND	ND	ND
9	24-30"	4290.10	2/22/99	ND	ND	ND	ND	ND
9	36-42"	4290.11	2/22/99	ND	ND	ND	ND	ND
9	48-54"	4290.12	2/22/99	ND	ND	ND	ND	ND
9	60-66"	4290.13	2/22/99	ND	ND	ND	ND	ND
9A	0-6"	4890.46	10/27/99	ND	ND	ND	0.262	0.262
9A	12-18"	4890.47	10/27/99	ND	ND	ND	0.241	0.241
9A	24-30"	4890.48	10/27/99	ND	ND	ND	0.087	0.087
9A	36-42"	4890.49	10/27/99	ND	ND	ND	ND	ND
9A	48-54"	4890.50	10/27/99	ND	ND	ND	ND	ND
9A	60-66"	4890.51	10/27/99	ND	ND	ND	ND	ND
9A	72-78"	4890.52	10/27/99	ND	ND	ND	ND	ND
9A	84-90"	4890.53	10/27/99	ND	ND	ND	ND	ND
9A	90-96"	4890.54	10/27/99	ND	ND	ND	ND	ND
9B	0-6"	4963.02	11/23/99	ND	ND	ND	ND	ND
9B	12-18"	4963.03	11/23/99	ND	ND	ND	ND	ND
9B	24-30"	4963.04	11/23/99	ND	ND	ND	ND	ND
9B	36-42"	4963.05	11/23/99	ND	ND	ND	ND	ND
9B	48-54"	4963.06	11/23/99	ND	ND	ND	ND	ND
9B	60-66"	4963.07	11/23/99	ND	ND	ND	ND	ND
9B	72-78"	4963.08	11/23/99	ND	ND	ND	ND	ND
9B	84-90"	4963.09	11/23/99	ND	ND	ND	ND	ND
10	0-6"	4290.14	2/22/99	ND	ND	ND	0.054	0.054
10	12-18"	4290.15	2/22/99	0.379	ND	ND	0.037	0.416
10	24-30"	4290.16	2/22/99	1.042	ND	ND	0.059	1.101
10	36-42"	4290.17	2/22/99	0.704	ND	ND	0.065	0.769
10	48-54"	4290.18	2/22/99	0.159	ND	ND	0.086	0.245
10	60-66"	4290.19	2/22/99	6.392	ND	ND	8.381	14.773
10	72-78"	5119.41	1/24/00	ND	ND	ND	ND	ND
10	84-90"	5119.42	1/24/00	ND	ND	ND	ND	ND
10	96-102"	5119.43	1/24/00	ND	ND	ND	ND	ND
10	108-114"	5119.44	1/24/00	ND	ND	ND	ND	ND
10A	0-6"	4890.01	10/27/99	ND	ND	ND	ND	ND
10A	12-18"	4890.02	10/27/99	ND	ND	ND	ND	ND
10A	24-30"	4890.03	10/27/99	ND	ND	ND	0.497	0.497
10A	36-42"	4890.04	10/27/99	ND	ND	ND	ND	ND
10A	48-54"	4890.05	10/27/99	ND	ND	ND	ND	ND
10A	60-66"	4890.06	10/27/99	ND	ND	ND	ND	ND
10A	72-78"	4890.07	10/27/99	ND	ND	ND	ND	ND
10A	84-90"	4890.08	10/27/99	ND	ND	ND	ND	ND
10A	90-96"	4890.09	10/27/99	ND	ND	ND	ND	ND
10B	0-6"	5148.19	2/7/00	ND	0.314	ND	ND	0.314

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
10B	12-18"	5148.20	2/7/00	ND	ND	ND	ND	ND
10B	24-30"	5148.21	2/7/00	ND	1.192	ND	ND	1.192
10B	36-42"	5148.22	2/7/00	ND	ND	ND	ND	ND
10B	48-54"	5148.23	2/7/00	ND	ND	ND	ND	ND
10B	60-66"	5148.24	2/7/00	ND	ND	ND	ND	ND
10B	72-78"	5148.25	2/7/00	ND	ND	ND	ND	ND
10B	84-90"	5148.26	2/7/00	ND	ND	ND	ND	ND
10B	96-102"	5148.27	2/7/00	ND	ND	ND	ND	ND
10B	108-114"	5148.28	2/7/00	ND	ND	ND	ND	ND
10C	0-6"	5148.29	2/7/00	ND	0.983	ND	ND	0.983
10C	12-18"	5148.30	2/7/00	ND	ND	ND	ND	ND
10C	24-30"	5148.31	2/7/00	ND	ND	ND	ND	ND
10C	36-42"	5148.32	2/7/00	ND	ND	ND	ND	ND
10C	48-54"	5148.33	2/7/00	ND	ND	ND	ND	ND
10C	60-66"	5148.34	2/7/00	ND	ND	ND	ND	ND
10C	72-78"	5148.35	2/7/00	ND	33.606	ND	ND	33.606
10C	84-90"	5148.36	2/7/00	ND	ND	ND	ND	ND
10C	96-102"	5148.37	2/7/00	ND	ND	ND	ND	ND
10C	108-114"	5148.38	2/7/00	ND	ND	ND	ND	ND
10D	0-6"	5207.01	2/29/00	ND	ND	ND	ND	ND
10D	12-18"	5207.02	2/29/00	ND	ND	ND	ND	ND
10D	24-30"	5207.03	2/29/00	ND	ND	ND	ND	ND
10D	36-42"	5207.04	2/29/00	ND	ND	ND	ND	ND
10D	48-54"	5207.05	2/29/00	ND	ND	ND	ND	ND
10D	60-66"	5207.06	2/29/00	ND	ND	ND	ND	ND
10D	72-78"	5207.07	2/29/00	ND	ND	ND	ND	ND
10D	84-90"	5207.08	2/29/00	ND	2.145	ND	ND	2.145
10D	96-102"	5207.09	2/29/00	ND	14.152	ND	ND	14.152
10D	108-114"	5228.01	3/8/00	ND	ND	ND	ND	ND
10D	120-126"	5228.02	3/8/00	ND	ND	ND	ND	ND
10D	132-138"	5228.03	3/8/00	ND	ND	ND	ND	ND
10D	144-150"	5228.04	3/8/00	ND	ND	ND	ND	ND
10E	0-6"	5228.05	3/8/00	ND	ND	1.682	ND	1.682
10E	12-18"	5228.06	3/8/00	ND	ND	ND	ND	ND
10E	24-30"	5228.07	3/8/00	ND	ND	ND	ND	ND
10E	36-42"	5228.08	3/8/00	ND	ND	ND	ND	ND
10E	48-54"	5228.09	3/8/00	ND	ND	ND	ND	ND
10E	60-66"	5228.10	3/8/00	ND	ND	ND	ND	ND
10E	72-78"	5228.11	3/8/00	ND	ND	ND	ND	ND 0.422
10E	84-90"	5228.12	3/8/00	ND	ND	0.432	ND	0.432
10E	96-102"	5228.13	3/8/00	ND	ND	1.484	ND	1.484
10E	108-116"	5228.14	3/8/00	ND	ND	ND	ND	ND
10E	122-128"	5228.15	3/8/00	ND	ND	ND	ND	ND
10E	134-140"	5228.16	3/8/00	ND	ND	ND	ND	ND
10E	144-150"	5228.17	3/8/00	ND	ND	ND	ND	ND
10F	0-6"	5272.01	3/22/00	ND	ND	ND	ND	ND
10F	12-18"	5272.02	3/22/00	ND	ND	ND	ND	ND

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
10F	24-30"	5272.03	3/22/00	ND	ND	ND	ND	ND
10F	36-42"	5272.04	3/22/00	ND	ND	ND	ND	ND
10F	48-54"	5272.05	3/22/00	ND	ND	ND	ND	ND
10F	60-66"	5272.06	3/22/00	ND	ND	ND	ND	ND
10F	72-78"	5272.07	3/22/00	ND	ND	ND	ND	ND
10F	84-90"	5272.08	3/22/00	ND	ND	ND	ND	ND
10F	96-102"	5272.09	3/22/00	ND	ND	ND	ND	ND
10F	108-114"	5272.10	3/22/00	ND	ND	ND	ND	ND
11	0-6"	4290.20	2/22/99	1.230	ND	ND	0.126	1.356
11	12-18"	4290.21	2/22/99	0.157	ND	ND	0.060	0.217
11	24-30"	4290.22	2/22/99	ND	ND	ND	ND	ND
11	36-42"	4290.23	2/22/99	ND	ND	ND	ND	ND
11	48-54"	4290.24	2/22/99	ND	ND	ND	0.234	0.234
11	60-66"	4290.25	2/22/99	ND	ND	ND	0.033	0.033
11A	0-6"	4890.10	10/27/99	ND	ND	0.513	ND	0.513
11A	12-18"	4890.11	10/27/99	ND	ND	0.657	ND	0.657
11A	24-30"	4890.12	10/27/99	ND	27.424	ND	ND	27.424
11A	36-42"	4890.13	10/27/99	0.745	ND	ND	0.532	1.277
11A	48-54"	4890.14	10/27/99	ND	ND	ND	ND	ND
11A	60-66"	4890.15	10/27/99	ND	5.526	ND	ND	5.526
11A	72-78"	4890.16	10/27/99	ND	ND	ND	ND	ND
11A	84-90"	4890.17	10/27/99	ND	ND	ND	ND	ND
11A	90-96"	4890.18	10/27/99	ND	ND	ND	ND	ND
11B	0-6"	5119.01	1/24/00	ND	ND	ND	ND	ND
11B	12-18"	5119.02	1/24/00	ND	ND	ND	ND	ND
11B	24-30"	5119.03	1/24/00	ND	1.482	ND	ND	1.482
11B	36-42"	5119.04	1/24/00	ND	ND	ND	ND	ND
11B	48-54"	5119.05	1/24/00	ND	1.277	ND	ND	1.277
11B	60-66"	5119.06	1/24/00	ND	1.646	ND	ND	1.646
11B	72-78"	5148.01	2/7/00	ND	0.323	ND	ND	0.323
11B	84-90"	5148.02	2/7/00	ND	0.582	ND	ND	0.582
11B	96-102"	5148.03	2/7/00	ND	ND	ND	ND	ND
11B	108-114"	5148.04	2/7/00	ND	ND	ND	ND	ND
11C	0-6"	5148.39	2/7/00	ND	ND	ND	ND	ND
11C	12-18"	5148.40	2/7/00	ND	ND	ND	ND	ND
11C	24-30"	5148.41	2/7/00	ND	ND	ND	ND	ND
11C	36-42"	5148.42	2/7/00	ND	4.060	ND	ND	4.060
11C	48-54"	5148.43	2/7/00	ND	ND	ND	ND	ND
11C	60-66"	5148.44	2/7/00	ND	ND	ND	ND	ND
11C	72-78"	5148.45	2/7/00	ND	0.978	ND	ND	0.978
11C	84-90"	5148.46	2/7/00	ND	0.301	ND	ND	0.301
11C	96-102"	5148.47	2/7/00	ND	ND	ND	ND	ND
11C	108-114"	5148.48	2/7/00	ND	ND	ND	ND	ND
11D	0-6"	5228.18	3/8/00	ND	ND	ND	ND	ND
11D	12-18"	5228.19	3/8/00	ND	ND	ND	ND	ND
11D	24-30"	5228.20	3/8/00	ND	ND	ND	ND	ND
11D	36-42"	5228.21	3/8/00	ND	6.352	ND	ND	6.352

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
11D	48-54"	5228.22	3/8/00	ND	ND	ND	ND	ND
11D	60-66"	5228.23	3/8/00	ND	9.339	ND	ND	9.339
11D	72-78"	5228.24	3/8/00	ND	17.262	ND	ND	17.262
11D	84-90"	5228.25	3/8/00	ND	ND	ND	ND	ND
11D	96-102"	5228.26	3/8/00	ND	ND	ND	ND	ND
11D	108-116"	5228.27	3/8/00	ND	ND	ND	ND	ND
11D	122-128"	5228.28	3/8/00	ND	ND	ND	ND	ND
11D	134-140"	5228.29	3/8/00	ND	ND	ND	ND	ND
11D	144-150"	5228.30	3/8/00	ND	ND	ND	ND	ND
11E	0-6"	5251.01	3/16/00	ND	ND	ND	ND	ND
11E	12-18"	5251.02	3/16/00	ND	1.017	ND	ND	1.017
11E	24-30"	5251.03	3/16/00	ND	ND	ND	ND	ND
11E	36-42"	5251.04	3/16/00	ND	ND	ND	ND	ND
11E	48-54"	5251.05	3/16/00	ND	187.444	ND	ND	187.444
11E	60-66"	5251.06	3/16/00	ND	ND	ND	ND	ND
11E	72-78"	5251.07	3/16/00	ND	ND	ND	ND	ND
11E	84-90"	5251.08	3/16/00	ND	ND	ND	ND	ND
11E	96-102"	5251.09	3/16/00	ND	ND	ND	ND	ND
11E	108-114"	5251.10	3/16/00	ND	ND	ND	ND	ND
11F	0-6"	5272.11	3/22/00	ND	ND	ND	ND	ND
11F	12-18"	5272.12	3/22/00	ND	ND	ND	ND	ND
11F	24-30"	5272.13	3/22/00	ND	ND	ND	ND	ND
11F	36-42"	5272.14	3/22/00	ND	ND	ND	ND	ND
11F	48-54"	5272.15	3/22/00	ND	ND	ND	ND	ND
11F	60-66"	5272.16	3/22/00	ND	ND	ND	ND	ND
11F	72-78"	5272.17	3/22/00	ND	ND	ND	ND	ND
11F	84-90"	5272.18	3/22/00	ND	ND	ND	ND	ND
11F	96-102"	5272.19	3/22/00	ND	ND	ND	ND	ND
11F	108-114"	5272.20	3/22/00	ND	ND	ND	ND	ND
12	0-6"	4290.26	2/22/99	0.079	ND	ND	0.036	0.115
12	12-18"	4290.27	2/22/99	0.195	ND	ND	0.060	0.255
12	24-30"	4290.28	2/22/99	0.272	ND	ND	0.059	0.331
12	36-42"	4290.29	2/22/99	ND	ND	ND	ND	ND
12	48-54"	4290.30	2/22/99	ND	ND	ND	ND	ND
12	60-66"	4290.31	2/22/99	ND	ND	ND	ND	ND
12A	0-6"	5119.07	1/24/00	ND	ND	ND	ND	ND
12A	12-18"	5119.08	1/24/00	ND	5.596	ND	ND	5.596
12A	24-30"	5119.09	1/24/00	ND	ND	ND	ND	ND
12A	36-42"	5119.10	1/24/00	ND	ND	ND	ND	ND
12A	48-54"	5119.11	1/24/00	ND	ND	ND	ND	ND
12A	60-66"	5119.12	1/24/00	ND	ND	ND	ND	ND
12B	0-6"	5119.13	1/24/00	ND	ND	ND	ND	ND
12B	12-18"	5119.14	1/24/00	ND	ND	ND	ND	ND
12B	24-30"	5119.15	1/24/00	ND	ND	ND	ND	ND
12B	36-42"	5119.16	1/24/00	ND	ND	ND	ND	ND
12B	48-54"	5119.17	1/24/00	ND	ND	ND	ND	ND
12B	60-66"	5119.18	1/24/00	ND	ND	ND	ND	ND

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
12C	0-6"	5119.19	1/24/00	ND	ND	ND	ND	ND
12C	12-18"	5119.20	1/24/00	ND	ND	ND	ND	ND
12C	24-30"	5119.21	1/24/00	ND	ND	ND	ND	ND
12C	36-42"	5119.22	1/24/00	ND	ND	ND	ND	ND
12C	48-54"	5119.23	1/24/00	ND	ND	ND	ND	ND
12C	60-66"	5119.24	1/24/00	ND	ND	ND	ND	ND
12D	0-6"	5148.09	2/7/00	ND	ND	ND	ND	ND
12D	12-18"	5148.10	2/7/00	ND	ND	ND	ND	ND
12D	24-30"	5148.11	2/7/00	ND	ND	ND	ND	ND
12D	36-42"	5148.12	2/7/00	ND	ND	ND	ND	ND
12D	48-54"	5148.13	2/7/00	ND	ND	ND	ND	ND
12D	60-66"	5148.14	2/7/00	ND	ND	ND	ND	ND
12D	72-78"	5148.15	2/7/00	ND	ND	ND	ND	ND
12D	84-90"	5148.16	2/7/00	ND	ND	ND	ND	ND
12D	96-102"	5148.17	2/7/00	ND	ND	ND	ND	ND
12D	108-114"	5148.18	2/7/00	ND	ND	ND	ND	ND
12E	0-6"	5148.49	2/7/00	ND	ND	ND	ND	ND
12E	12-18"	5148.50	2/7/00	ND	ND	ND	ND	ND
12E	24-30"	5148.51	2/7/00	ND	ND	ND	ND	ND
12E	36-42"	5148.52	2/7/00	ND	ND	ND	ND	ND
12E	48-54"	5148.53	2/7/00	ND	ND	ND	ND	ND
12E	60-66"	5148.54	2/7/00	ND	ND	ND	ND	ND
12E	72-78"	5148.55	2/7/00	ND	ND	ND	ND	ND
12E	84-90"	5148.56	2/7/00	ND	ND	ND	ND	ND
12E	96-102"	5148.57	2/7/00	ND	ND	ND	2.315	2.315
12E	108-114"	5148.58	2/7/00	ND	ND	9.961	ND	9.961
12F	0-6"	5148.59	2/7/00	ND	1.167	ND	ND	1.167
12F	12-18"	5148.60	2/7/00	ND	ND	ND	ND	ND
12F	24-30"	5148.61	2/7/00	ND	ND	ND	ND	ND
12F	36-42"	5148.62	2/7/00	ND	ND	ND	ND	ND
12F	48-54"	5148.63	2/7/00	ND	ND	ND	ND	ND
12F	60-66"	5148.64	2/7/00	ND	ND	ND	ND	ND
12F	72-78"	5148.65	2/7/00	ND	ND	ND	ND	ND
12F	84-90"	5148.66	2/7/00	ND	ND	ND	ND	ND
12F	96-102"	5148.67	2/7/00	ND	ND	1.985	ND	1.985
12F	108-114"	5148.68	2/7/00	ND	ND	ND	ND	ND
12G	0-6"	5272.41	3/22/00	ND	ND	0.556	ND	0.556
12G	12-18"	5272.42	3/22/00	ND	ND	ND	ND	ND
12G	24-30"	5272.43	3/22/00	ND	ND	ND	ND	ND
12G	36-42"	5272.44	3/22/00	ND	ND	ND	ND	ND
12G	48-54"	5272.45	3/22/00	ND	ND	ND	ND	ND
12G	60-66"	5272.46	3/22/00	ND	ND	ND	ND	ND
12G	72-78"	5272.47	3/22/00	ND	ND	ND	ND	ND
12G	84-90"	5272.48	3/22/00	ND	ND	ND	ND	ND
12G	96-102"	5272.49	3/22/00	ND	ND	ND	ND	ND
12G	108-114"	5272.50	3/22/00	ND	ND	ND	ND	ND
12H	0-6"	5272.31	3/22/00	ND	0.496	ND	ND	0.496

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
12H	12-18"	5272.32	3/22/00	ND	ND	ND	ND	ND
12H	24-30"	5272.33	3/22/00	ND	ND	ND	ND	ND
12H	36-42"	5272.34	3/22/00	ND	ND	ND	ND	ND
12H	48-54"	5272.35	3/22/00	ND	ND	1.533	ND	1.533
12H	60-66"	5272.36	3/22/00	ND	ND	1.885	ND	1.885
12H	72-78"	5272.37	3/22/00	ND	ND	ND	ND	ND
12H	84-90"	5272.38	3/22/00	ND	ND	ND	ND	ND
12H	96-102"	5272.39	3/22/00	ND	ND	ND	ND	ND
12H	108-114"	5272.40	3/22/00	ND	ND	ND	ND	ND
121	0-6"	5272.21	3/22/00	ND	ND	6.697	ND	6.697
121	12-18"	5272.22	3/22/00	ND	ND	ND	ND	ND
121	24-30"	5272.23	3/22/00	ND	ND	ND	ND	ND
121	36-42"	5272.24	3/22/00	ND	ND	ND	ND	ND
121	48-54"	5272.25	3/22/00	ND	ND	ND	ND	ND
121	60-66"	5272.26	3/22/00	ND	ND	ND	ND	ND
121	72-78"	5272.27	3/22/00	ND	ND	ND	ND	ND
121	84-90"	5272.28	3/22/00	ND	ND	ND	ND	ND
121	96-102"	5272.29	3/22/00	ND	ND	ND	ND	ND
121	108-114"	5272.30	3/22/00	ND	ND	ND	ND	ND
13	0-6"	4294.02	2/23/99	ND	ND	ND	ND	ND
13	12-18"	4294.03	2/23/99	ND	ND	ND	ND	ND
13	24-30"	4294.04	2/23/99	ND	ND	ND	ND	ND
13	36-42"	4294.05	2/23/99	ND	ND	ND	ND	ND
13	48-54"	4294.06	2/23/99	0.915	ND	ND	ND	0.915
13	60-66"	4294.07	2/23/99	3.170	ND	ND	1.491	4.661
13	72-78"	5119.45	1/24/00	ND	ND	ND	ND	ND
13	84-90"	5119.46	1/24/00	ND	ND	ND	ND	ND
13	96-102"	5119.47	1/24/00	ND	ND	ND	ND	ND
13	108-114"	5119.48	1/24/00	ND	ND	ND	ND	ND
14	0-6"	4294.08	2/23/99	ND	ND	ND	0.102	0.102
14	12-18"	4294.09	2/23/99	0.236	ND	ND	0.072	0.308
14	24-30"	4294.10	2/23/99	ND	ND	ND	ND	ND
14	36-42"	4294.11	2/23/99	ND	ND	ND	ND	ND
14	48-54"	4294.12	2/23/99	ND	ND	ND	ND	ND
14	60-66"	4294.13	2/23/99	0.402	ND	ND	0.062	0.464
15	0-6"	4294.14	2/23/99	0.083	ND	ND	0.089	0.172
15	12-18"	4294.15	2/23/99	0.140	ND	ND	0.058	0.198
15	24-30"	4294.16	2/23/99	ND	ND	ND	ND	ND
15	36-42"	4294.17	2/23/99	ND	ND	ND	ND	ND
15	48-54"	4294.18	2/23/99	ND	ND	ND	ND	ND
15	60-66"	4294.19	2/23/99	ND	ND	ND	0.134	0.134
15A	0-6"	4890.19	10/27/99	ND	ND	ND	ND	ND
15A	12-18"	4890.20	10/27/99	ND	ND	ND	ND	ND
15A	24-30"	4890.21	10/27/99	ND	ND	ND	ND	ND
15A	36-42"	4890.22	10/27/99	ND	ND	ND	ND	ND
15A	48-54"	4890.23	10/27/99	ND	ND	ND	ND	ND
15A	60-66"	4890.24	10/27/99	ND	ND	ND	0.667	0.667

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
15A	72-78"	4890.25	10/27/99	ND	ND	ND	ND	ND
15A	84-90"	4890.26	10/27/99	ND	ND	42.494	ND	42.494
15A	90-96"	4890.27	10/27/99	ND	ND	ND	ND	ND
15B	0-6"	4963.29	11/23/99	ND	ND	ND	ND	ND
15B	12-18"	4963.30	11/23/99	ND	ND	ND	ND	ND
15B	24-30"	4963.31	11/23/99	ND	ND	ND	ND	ND
15B	36-42"	4963.32	11/23/99	ND	ND	ND	ND	ND
15B	48-54"	4963.33	11/23/99	ND	ND	ND	ND	ND
15B	60-66"	4963.34	11/23/99	ND	ND	ND	ND	ND
15B	72-78"	4963.35	11/23/99	ND	ND	ND	ND	ND
15B	84-90"	4963.36	11/23/99	ND	ND	ND	ND	ND
16	0-6"	4294.23	2/23/99	ND	ND	ND	ND	ND
16	12-18"	4294.24	2/23/99	ND	ND	ND	ND	ND
16	24-30"	4294.25	2/23/99	ND	ND	ND	ND	ND
16	36-42"	4294.26	2/23/99	0.116	ND	ND	0.054	0.170
16	48-54"	4294.27	2/23/99	ND	ND	ND	ND	ND
16	60-66"	4294.28	2/23/99	0.590	ND	ND	0.129	0.719
17	0-6"	4307.01	3/1/99	ND	ND	ND	ND	ND
17	12-18"	4307.02	3/1/99	ND	ND	ND	ND	ND
17	24-30"	4307.03	3/1/99	ND	ND	ND	ND	ND
17	36-42"	4307.04	3/1/99	40.042	ND	ND	0.867	40.909
17	48-54"	4307.05	3/1/99	0.518	ND	ND	0.041	0.559
17	60-66"	4307.06	3/1/99	1.058	ND	ND	ND	1.058
18	0-6"	4307.07	3/1/99	ND	ND	ND	ND	ND
18	12-18"	4307.08	3/1/99	ND	ND	ND	ND	ND
18	24-30"	4307.09	3/1/99	ND	ND	ND	ND	ND
18	36-42"	4307.10	3/1/99	394.167	ND	ND	2.893	397.060
18	48-54"	4307.11	3/1/99	5.089	ND	ND	0.478	5.567
18	60-66"	4307.12	3/1/99	4.733	ND	ND	0.042	4.775
18	72-78"	5119.49	1/24/00	ND	ND	ND	ND	ND
18	84-90"	5119.50	1/24/00	ND	ND	ND	ND	ND
18	96-102"	5119.51	1/24/00	ND	ND	ND	ND	ND
18	108-114"	5119.52	1/24/00	ND	ND	ND	ND	ND
18A	0-6"	4903.16	11/1/99	ND	ND	ND	ND	ND
18A	12-18"	4903.17	11/1/99	ND	ND	ND	ND	ND
18A	24-30"	4903.18	11/1/99	ND	ND	ND	ND	ND
18A	36-42"	4903.19	11/1/99	ND	ND	ND	ND	ND
18A	48-54"	4903.20	11/1/99	ND	ND	ND	ND	ND
18A	60-66"	4903.21	11/1/99	ND	ND	ND	ND	ND
18A	72-78"	4903.22	11/1/99	ND	ND	ND	ND	ND
18B	0-6"	4963.47	11/23/99	ND	ND	ND	ND	ND
18B	12-18"	4963.48	11/23/99	ND	ND	ND	ND	ND
18B	24-30"	4963.49	11/23/99	ND	ND	ND	ND	ND
18B	36-42"	4963.50	11/23/99	ND	ND	ND	ND	ND
18B	48-54"	4963.51	11/23/99	ND	ND	ND	ND	ND
18B	60-66"	4963.52	11/23/99	ND	ND	ND	ND	ND
18B	72-78"	4963.53	11/23/99	ND	ND	ND	ND	ND

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
18B	84-90"	4963.54	11/23/99	ND	ND	ND	ND	ND
19	0-6"	4307.13	3/1/99	ND	ND	ND	ND	ND
19	12-18"	4307.14	3/1/99	ND	ND	ND	ND	ND
19	24-30"	4307.15	3/1/99	ND	ND	ND	ND	ND
19	36-42"	4307.16	3/1/99	1.892	ND	ND	0.104	1.996
19	48-54"	4307.17	3/1/99	4.111	ND	ND	0.918	5.029
19	60-66"	4307.18	3/1/99	24.754	ND	ND	0.558	25.312
19	72-78"	5119.53	1/24/00	ND	ND	ND	ND	ND
19	84-90"	5119.54	1/24/00	ND	ND	ND	ND	ND
19	96-102"	5119.55	1/24/00	ND	ND	ND	ND	ND
19	108-114"	5119.56	1/24/00	ND	ND	ND	ND	ND
20	0-6"	4307.19	3/1/99	ND	ND	ND	ND	ND
20	12-18"	4307.20	3/1/99	ND	ND	ND	0.009	0.009
20	24-30"	4307.21	3/1/99	ND	ND	ND	ND	ND
20	36-42"	4307.22	3/1/99	ND	ND	ND	ND	ND
20	48-54"	4307.23	3/1/99	ND	ND	0.264	ND	0.264
20	60-66"	4307.24	3/1/99	ND	ND	0.580	ND	0.580
21	0-6"	4313.02	3/2/99	ND	ND	ND	ND	ND
21	12-18"	4313.03	3/2/99	ND	ND	ND	ND	ND
21	24-30"	4313.04	3/2/99	ND	ND	ND	0.039	0.039
21	36-42"	4313.05	3/2/99	ND	ND	ND	ND	ND
21	48-54"	4313.06	3/2/99	ND	ND	ND	ND	ND
21	60-66"	4313.07	3/2/99	21.553	ND	ND	0.843	22.396
21	72-78"	5119.57	1/24/00	ND	ND	ND	ND	ND
21	84-90"	5119.58	1/24/00	ND	ND	ND	ND	ND
21	96-102"	5119.59	1/24/00	ND	ND	ND	ND	ND
21	108-114"	5119.60	1/24/00	ND	ND	ND	ND	ND
21A	0-6"	4903.09	11/1/99	ND	ND	ND	ND	ND
21A	12-18"	4903.10	11/1/99	ND	ND	ND	ND	ND
21A	24-30"	4903.11	11/1/99	ND	ND	ND	ND	ND
21A	36-42"	4903.12	11/1/99	ND	ND	ND	ND	ND
21A	48-54"	4903.13	11/1/99	ND	ND	ND	ND	ND
21A	60-66"	4903.14	11/1/99	ND	ND	ND	ND	ND
21A	72-78"	4903.15	11/1/99	ND	ND	ND	ND	ND
21B	0-6"	4965.02	11/24/99	ND	ND	ND	ND	ND
21B	12-18"	4965.03	11/24/99	ND	ND	ND	ND	ND
21B	24-30"	4965.04	11/24/99	ND	ND	ND	ND	ND
21B	36-42"	4965.05	11/24/99	ND	ND	ND	ND	ND
21B	48-54"	4965.06	11/24/99	ND	ND	ND	ND	ND
21B	60-66"	4965.07	11/24/99	ND	ND	ND	ND	ND
21B	72-78"	4965.08	11/24/99	ND	ND	ND	ND	ND
21B	84-90"	4965.09	11/24/99	ND	ND	ND	ND	ND
22	0-6"	4313.11	3/2/99	ND	ND	ND	ND	ND
22	12-18"	4313.12	3/2/99	ND	ND	ND	ND	ND
22	24-30"	4313.13	3/2/99	0.185	ND	ND	0.090	0.275
22	36-42"	4313.14	3/2/99	0.193	ND	ND	ND	0.193
22	48-54"	4313.15	3/2/99	0.429	ND	ND	0.086	0.515

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Data ((mg/Kg)*			0.49	0.49	0.49	0.49	0.49
22	60-66"	4313.16	3/2/99	ND	ND	ND	0.064	0.064
23	0-6"	4313.18	3/2/99	ND	ND	ND	ND	ND
23	12-18"	4313.19	3/2/99	ND	ND	ND	ND	ND
23	24-30"	4313.20	3/2/99	ND	ND	ND	ND	ND
23	36-42"	4313.21	3/2/99	ND	ND	ND	ND	ND
23	48-54"	4313.22	3/2/99	0.831	ND	ND	0.083	0.914
23	60-66"	4313.23	3/2/99	ND	ND	ND	ND	ND
24	0-6"	4316.02	3/3/99	ND	ND	ND	ND	ND
24	12-18"	4316.03	3/3/99	ND	ND	ND	ND	ND
24	24-30"	4316.04	3/3/99	ND	ND	ND	ND	ND
24	36-42"	4316.05	3/3/99	ND	ND	ND	ND	ND
24	48-54"	4316.06	3/3/99	ND	ND	ND	ND	ND
24	60-66"	4316.07	3/3/99	ND	ND	ND	ND	ND
24A	0-6"	4903.02	11/1/99	ND	ND	ND	ND	ND
24A	12-18"	4903.03	11/1/99	ND	ND	ND	ND	ND
24A	24-30"	4903.04	11/1/99	ND	ND	ND	ND	ND
24A	36-42"	4903.05	11/1/99	ND	ND	ND	ND	ND
24A	48-54"	4903.06	11/1/99	ND	ND	ND	ND	ND
24A	60-66"	4903.07	11/1/99	ND	ND	ND	ND	ND
24A	72-78"	4903.08	11/1/99	ND	5.364	ND	ND	5.364
24A	84-90"	5119.69	1/24/00	ND	ND	ND	ND	ND
24A	96-102"	5119.70	1/24/00	ND	ND	ND	ND	ND
24A	108-114"	5119.71	1/24/00	ND	ND	ND	ND	ND
24A	120-126"	5119.72	1/24/00	ND	ND	ND	ND	ND
24A	132-138"	5119.73	1/24/00	ND	ND	ND	ND	ND
24B	0-6"	4965.11	11/24/99	ND	ND	ND	ND	ND
24B	12-18"	4965.12	11/24/99	ND	ND	ND	ND	ND
24B	24-30"	4965.13	11/24/99	ND	ND	ND	ND	ND
24B	36-42"	4965.14	11/24/99	ND	ND	ND	ND	ND
24B	48-54"	4965.15	11/24/99	ND	ND	ND	ND	ND
24B	60-66"	4965.16	11/24/99	ND	ND	ND	ND	ND
24B	72-78"	4965.17	11/24/99	ND	ND	ND	ND	ND
24B	84-90"	4965.18	11/24/99	ND	ND	ND	ND	ND
24B Field Dup	0-6"	4965.20	11/24/99	ND	ND	ND	ND	ND
24B Field Dup	12-18"	4965.21	11/24/99	ND	ND	ND	ND	ND
24B Field Dup	24-30"	4965.22	11/24/99	ND	ND	ND	ND	ND
24B Field Dup	36-42"	4965.23	11/24/99	ND	ND	ND	ND	ND
24B Field Dup	48-54"	4965.24	11/24/99	ND	ND	ND	ND	ND
24B Field Dup	60-66"	4965.25	11/24/99	ND	ND	ND	ND	ND
24B Field Dup	72-78"	4965.26	11/24/99	ND	ND	ND	ND	ND
24B Field Dup	84-90"	4965.27	11/24/99	ND	ND	ND	ND	ND
24C	0-6"	5119.74	1/24/00	ND	ND	ND	ND	ND
24C	12-18"	5119.75	1/24/00	ND	ND	ND	ND	ND
24C	24-30"	5119.76	1/24/00	ND	ND	ND	ND	ND
24C	36-42"	5119.77	1/24/00	ND	9.354	ND	ND	9.354
24C	48-54"	5119.78	1/24/00	ND	805.055	ND	ND	805.055
24C	60-66"	5119.79	1/24/00	ND	48.835	ND	ND	48.835

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
24C	72-78"	5148.05	2/7/00	ND	ND	ND	ND	ND
24C	84-90"	5148.06	2/7/00	ND	ND	ND	ND	ND
24C	96-102"	5148.07	2/7/00	ND	ND	ND	ND	ND
24C	108-114"	5148.08	2/7/00	ND	ND	ND	ND	ND
24D	0-6"	5148.69	2/7/00	ND	ND	ND	ND	ND
24D	12-18"	5148.70	2/7/00	ND	ND	ND	ND	ND
24D	24-30"	5148.71	2/7/00	ND	ND	ND	ND	ND
24D	36-42"	5148.72	2/7/00	ND	ND	ND	ND	ND
24D	48-54"	5148.73	2/7/00	ND	ND	ND	ND	ND
24D	60-66"	5148.74	2/7/00	ND	ND	ND	ND	ND
24D	72-78"	5148.75	2/7/00	ND	ND	ND	ND	ND
24D	84-90"	5148.76	2/7/00	ND	ND	ND	ND	ND
24D	96-102"	5148.77	2/7/00	ND	ND	ND	ND	ND
24D	108-114"	5148.78	2/7/00	ND	ND	ND	ND	ND
24E	0-6"	5148.79	2/7/00	ND	ND	ND	ND	ND
24E	12-18"	5148.80	2/7/00	ND	ND	ND	ND	ND
24E	24-30"	5148.81	2/7/00	ND	ND	0.596	ND	0.596
24E	36-42"	5148.82	2/7/00	ND	ND	ND	ND	ND
24E	48-54"	5148.83	2/7/00	ND	ND	ND	0.591	0.591
24E	60-66"	5148.84	2/7/00	ND	ND	ND	ND	ND
24E	72-78"	5148.85	2/7/00	ND	ND	ND	ND	ND
24E	84-90"	5148.86	2/7/00	ND	ND	ND	ND	ND
24E	96-102"	5148.87	2/7/00	ND	ND	ND	ND	ND
24E	108-114"	5148.88	2/7/00	ND	ND	ND	ND	ND
24F	0-6"	5148.89	2/7/00	ND	ND	ND	ND	ND
24F	12-18"	5148.90	2/7/00	ND	ND	ND	ND	ND
24F	24-30"	5148.91	2/7/00	ND	ND	ND	ND	ND
24F	36-42"	5148.92	2/7/00	ND	ND	ND	ND	ND
24F	48-54"	5148.93	2/7/00	ND	ND	ND	ND	ND
24F	60-66"	5148.94	2/7/00	ND	ND	ND	ND	ND
24F	72-78"	5148.95	2/7/00	ND	ND	ND	ND	ND
24F	84-90"	5148.96	2/7/00	ND	ND	ND	ND	ND
24F	96-102"	5148.97	2/7/00	ND	ND	ND	4.126	4.126
24F	108-114"	5148.98	2/7/00	ND	ND	ND	1.756	1.756
24G	0-6"	5148.99	2/7/00	ND	ND	ND	ND	ND
24G	12-18"	5148.100	2/7/00	ND	ND	ND	ND	ND
24G	24-30"	5148.101	2/7/00	ND	ND	ND	ND	ND
24G	36-42"	5148.102	2/7/00	ND	ND	ND	ND	ND
24G	48-54"	5148.103	2/7/00	ND	ND	ND	ND	ND
24G	60-66"	5148.104	2/7/00	ND	ND	ND	ND	ND
24G	72-78"	5148.105	2/7/00	ND	ND	ND	ND	ND
24G	84-90"	5148.106	2/7/00	ND	ND	ND	ND	ND
24G	96-102"	5148.107	2/7/00	ND	ND	ND	ND	ND
24G	108-114"	5148.108	2/7/00	ND	ND	ND	ND	ND
24H	0-6"	5148.109	2/7/00	ND	ND	ND	ND	ND
24H	12-18"	5148.110	2/7/00	ND	ND	ND	ND	ND
24H	24-30"	5148.111	2/7/00	ND	ND	ND	ND	ND

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
24H	36-42"	5148.112	2/7/00	ND	ND	ND	ND	ND
24H	48-54"	5148.113	2/7/00	ND	ND	ND	ND	ND
24H	60-66"	5148.114	2/7/00	ND	ND	ND	ND	ND
24H	72-78"	5148.115	2/7/00	ND	ND	ND	ND	ND
24H	84-90"	5148.116	2/7/00	ND	ND	ND	ND	ND
24H	96-102"	5148.117	2/7/00	ND	ND	ND	ND	ND
24H	108-114"	5148.118	2/7/00	ND	ND	ND	ND	ND
24H Field Dup	72-78"	5148.119	2/7/00	ND	ND	ND	ND	ND
24H Field Dup	84-90"	5148.120	2/7/00	ND	ND	ND	ND	ND
24H Field Dup	96-102"	5148.121	2/7/00	ND	ND	ND	ND	ND
24H Field Dup	108-114"	5148.122	2/7/00	ND	ND	ND	ND	ND
25	0-6"	4316.09	3/3/99	ND	ND	ND	ND	ND
25	12-18"	4316.10	3/3/99	ND	ND	ND	ND	ND
25	24-30"	4316.11	3/3/99	ND	ND	ND	ND	ND
25	36-42"	4316.12	3/3/99	0.653	ND	ND	0.690	1.343
25	48-54"	4316.13	3/3/99	ND	ND	ND	0.039	0.039
25	60-66"	4316.14	3/3/99	ND	ND	7.057	ND	7.057
25	72-78"	5119.61	1/24/00	ND	ND	ND	ND	ND
25	84-90"	5119.62	1/24/00	ND	ND	ND	ND	ND
25	96-102"	5119.63	1/24/00	ND	ND	ND	ND	ND
25	108-114"	5119.64	1/24/00	ND	ND	ND	ND	ND
26	0-6"	4316.16	3/3/99	ND	ND	ND	0.020	0.020
26	12-18"	4316.17	3/3/99	ND	ND	ND	ND	ND
26	24-30"	4316.18	3/3/99	ND	ND	ND	ND	ND
26	36-42"	4316.19	3/3/99	0.320	ND	ND	0.383	0.703
26	48-54"	4316.20	3/3/99	1.132	ND	ND	0.026	1.158
26	60-66"	4316.21	3/3/99	4.231	ND	ND	ND	4.231
26	72-78"	5119.65	1/24/00	ND	ND	ND	ND	ND
26	84-90"	5119.66	1/24/00	ND	ND	ND	ND	ND
26	96-102"	5119.67	1/24/00	ND	ND	ND	ND	ND
26	108-114"	5119.68	1/24/00	ND	ND	ND	ND	ND
27	0-6"	4316.23	3/3/99	ND	ND	ND	ND	ND
27	12-18"	4316.24	3/3/99	ND	ND	ND	ND	ND
27	24-30"	4316.25	3/3/99	ND	ND	ND	ND	ND
27	36-42"	4316.26	3/3/99	ND	ND	ND	0.707	0.707
27	48-54"	4316.27	3/3/99	ND	ND	ND	ND	ND
27	60-66"	4316.28	3/3/99	ND	ND	ND	0.033	0.033
27A	0-6"	4903.23	11/1/99	ND	ND	ND	ND	ND
27A	12-18"	4903.24	11/1/99	ND	ND	ND	ND	ND
27A	24-30"	4903.25	11/1/99	ND	ND	ND	ND	ND
27A	36-42"	4903.26	11/1/99	ND	ND	ND	ND	ND
27A	48-54"	4903.27	11/1/99	ND	ND	ND	ND	ND
27A	60-66"	4903.28	11/1/99	ND	ND	ND	ND	ND
27A	72-78"	4903.29	11/1/99	ND	ND	ND	ND	ND
27B	0-6"	4963.38	11/23/99	ND	ND	ND	ND	ND
27B	12-18"	4963.39	11/23/99	ND	ND	ND	ND	ND
27B	24-30"	4963.40	11/23/99	ND	ND	ND	ND	ND

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

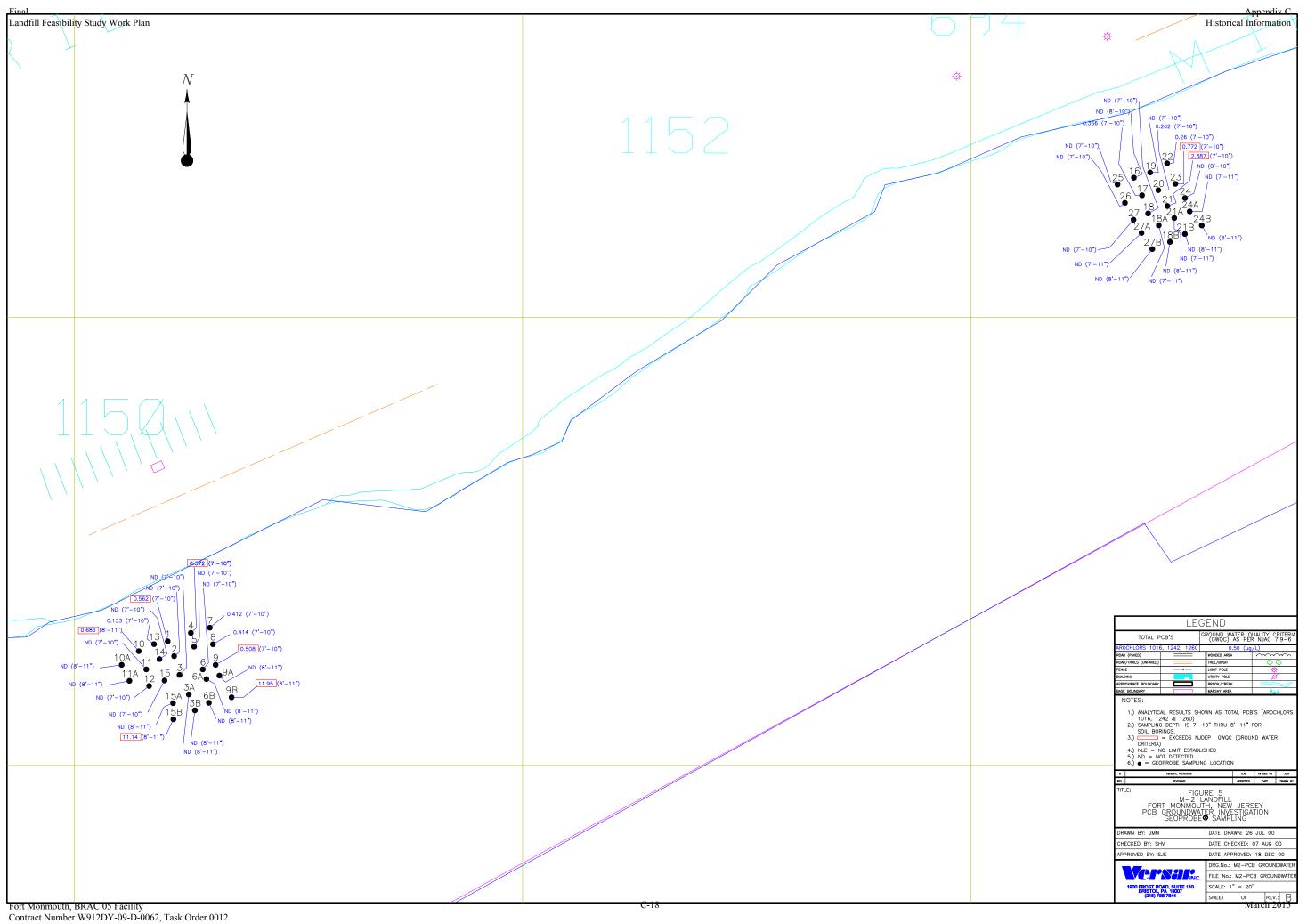
* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

				Arochlor	Arochlor	Arochlor	Arochlor	Total
Boring	Depth	Lab I.D.	Sample Date	1016	1242	1254	1260	PCB
Regulatory Level	(mg/Kg)*			0.49	0.49	0.49	0.49	0.49
27B	36-42"	4963.41	11/23/99	ND	ND	ND	ND	ND
27B	48-54"	4963.42	11/23/99	ND	ND	ND	ND	ND
27B	60-66"	4963.43	11/23/99	ND	ND	ND	ND	ND
27B	72-78"	4963.44	11/23/99	ND	ND	ND	ND	ND
27B	84-90"	4963.45	11/23/99	ND	ND	ND	ND	ND
27A Field Dup	0-6"	4903.34	11/1/99	ND	ND	ND	ND	ND
27A Field Dup	12-18"	4903.35	11/1/99	ND	ND	ND	ND	ND
27A Field Dup	24-30"	4903.36	11/1/99	ND	ND	ND	ND	ND
27A Field Dup	36-42"	4903.37	11/1/99	ND	ND	ND	ND	ND
27A Field Dup	48-54"	4903.38	11/1/99	ND	ND	ND	ND	ND
27A Field Dup	60-66"	4903.39	11/1/99	ND	ND	ND	ND	ND
27A Field Dup	72-78"	4903.40	11/1/99	ND	ND	ND	ND	ND
28	0-6"	4320.04	3/5/99	ND	ND	ND	ND	ND
28	12-18"	4320.05	3/5/99	ND	ND	ND	0.020	0.020
28	24-30"	4320.06	3/5/99	0.224	ND	ND	0.196	0.420
28	36-42"	4320.07	3/5/99	ND	ND	ND	ND	ND
28	48-54"	4320.08	3/5/99	0.620	ND	ND	0.231	0.851
28	60-66"	4320.09	3/5/99	0.654	ND	ND	0.315	0.969
29	0-6"	4320.10	3/5/99	ND	ND	ND	ND	ND
29	12-18"	4320.11	3/5/99	ND	ND	ND	ND	ND
29	24-30"	4320.12	3/5/99	ND	ND	ND	ND	ND
29	36-42"	4320.13	3/5/99	ND	ND	ND	ND	ND
29	48-54"	4320.14	3/5/99	ND	ND	ND	ND	ND
29	60-66"	4320.15	3/5/99	0.216	ND	ND	0.116	0.332
30	0-6"	4320.16	3/5/99	ND	ND	ND	ND	ND
30	12-18"	4320.17	3/5/99	ND	ND	ND	ND	ND
30	24-30"	4320.18	3/5/99	ND	ND	ND	0.049	0.049
30	36-42"	4320.19	3/5/99	ND	ND	ND	ND	ND
30	48-54"	4320.20	3/5/99	ND	ND	ND	ND	ND
30	60-66"	4320.21	3/5/99	ND	ND	ND	ND	ND
30 Field Dup	0-6"	4320.22	3/5/99	ND	ND	ND	ND	ND
30 Field Dup	12-18"	4320.23	3/5/99	ND	ND	ND	ND	ND
30 Field Dup	24-30"	4320.24	3/5/99	ND	ND	ND	ND	ND
30 Field Dup	36-42"	4320.25	3/5/99	ND	ND	ND	ND	ND
30 Field Dup	48-54"	4320.26	3/5/99	ND	ND	ND	ND	ND
30 Field Dup	60-66"	4320.27	3/5/99	ND	ND	ND	ND	ND

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).


* Regulatory levels are based on NJDEP's Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Exceedances of the RDCSCC are highlighted and printed in **bold-faced** type.

ND: Not Detected

Contract Number W912DY-09-D-0062, Task Order 0012

Fort Monmouth, BRAC 05 Facility

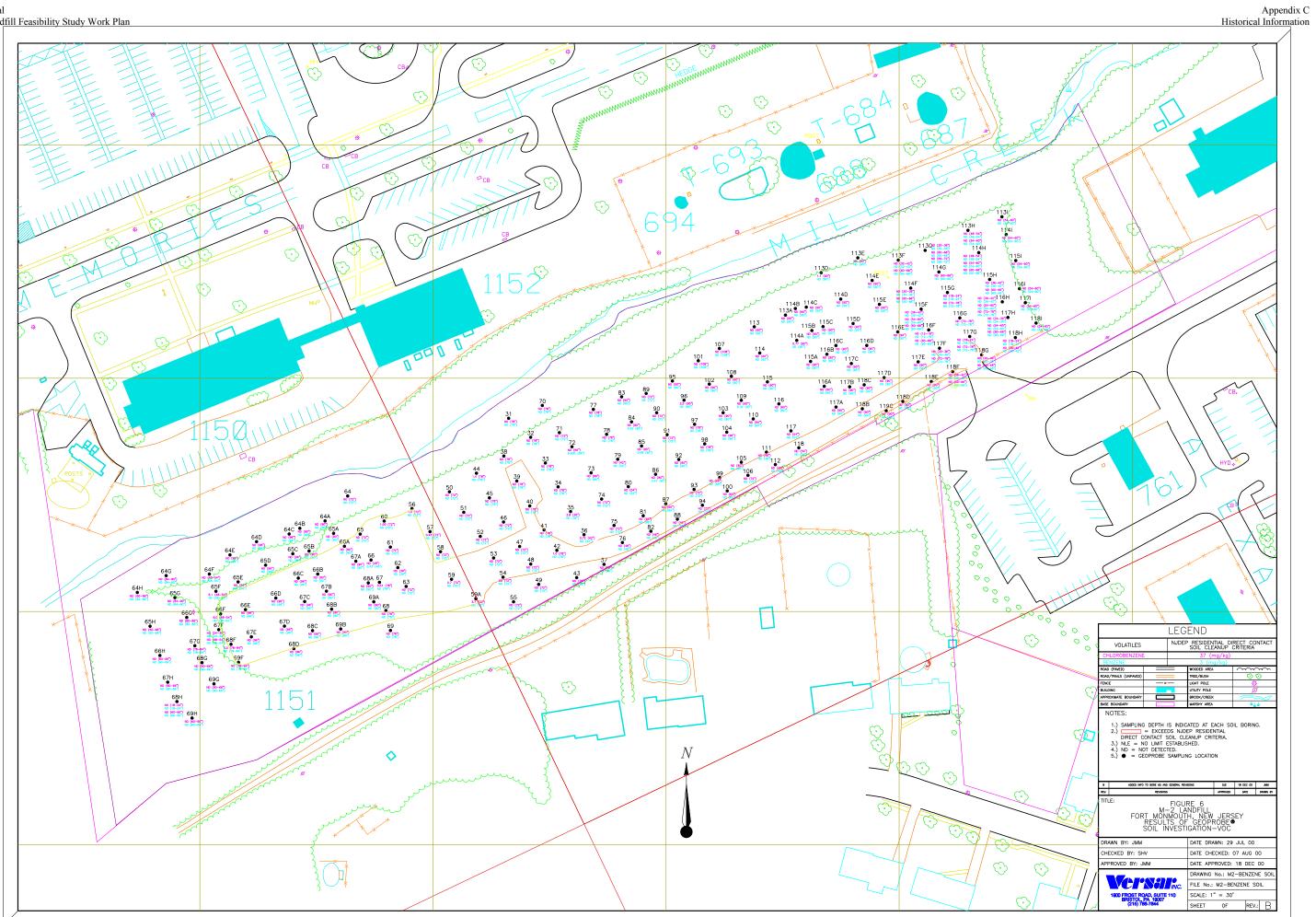
Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1260	Total PCB
Regulatory Level				0.50	0.50	0.50	0.50
1	7-10'	4281.27	2/17/99	0.33	ND	0.232	0.562
2	7-10'	4281.28	2/17/99	ND	ND	ND	ND
3	7-10'	4281.29	2/17/99	ND	ND	ND	ND
3A	8-11'	4897.04	10/29/99	ND	ND	ND	ND
3B	8-11'	4963.28	11/23/99	ND	ND	ND	ND
4	7-10'	4281.30	2/17/99	0.572	ND	ND	0.572
5	7-10'	4285.20	2/19/99	ND	ND	ND	ND
6	7-10'	4285.21	2/19/99	ND	ND	ND	ND
6A	8-11'	4897.06	10/29/99	ND	ND	ND	ND
6B	8-11'	4963.19	11/23/99	ND	ND	ND	ND
7	7-10'	4285.22	2/19/99	0.412	ND	ND	0.412
8	7-10'	4290.32	2/22/99	0.414	ND	ND	0.414
9	7-10'	4290.33	2/22/99	0.508	ND	ND	0.508
9A	8-11'	4897.07	10/29/99	ND	ND	ND	ND
9B	8-11'	4963.10	11/23/99	ND	11.950	ND	11.950
10	7-10'	4290.34	2/22/99	0.686	ND	ND	0.686
10A	8-11'	4897.02	10/29/99	ND	ND	ND	ND
11	7-10'	4290.35	2/22/99	ND	ND	ND	ND
11A	8-11'	4897.03	10/29/99	ND	ND	ND	ND
12	7-10'	4290.36	2/22/99	ND	ND	ND	ND
13	7-10'	4294.20	2/23/99	0.133	ND	ND	0.133
14	7-10'	4294.21	2/23/99	ND	ND	ND	ND
15	7-10'	4294.22	2/23/99	ND	ND	ND	ND
15A	8-11'	4897.05	10/29/99	ND	ND	ND	ND
15B	8-11'	4963.37	11/23/99	ND	11.140	ND	11.140
16	8-10'	4299.02	2/24/99	ND	ND	ND	ND
17	7-10'	4320.02	3/5/99	0.366	ND	ND	0.366
18	7-10'	4320.03	3/5/99	ND	ND	ND	ND
18A	7-11'	4903.32	11/1/99	ND	ND	ND	ND
18B	8-11'	4963.55	11/23/99	ND	ND	ND	ND
19	7-10'	4313.08	3/2/99	ND	ND	ND	ND
20	7-10'	4313.09	3/2/99	0.262	ND	ND	0.262
21	7-10'	4313.10	3/2/99	2.235	ND	0.152	2.387
21A	7-11'	4903.31	11/1/99	ND	ND	ND	ND
21B	8-11'	4965.10	11/24/99	ND	ND	ND	ND
22	7-10'	4313.17	3/2/99	0.260	ND	ND	0.260
23	7-10'	4313.24	3/2/99	0.772	ND	ND	0.772
24	8-10'	4316.08	3/3/99	ND	ND	ND	ND
24A	7-11'	4903.30	11/1/99	ND	ND	ND	ND
24B	8-11'	4965.19	11/24/99	ND	ND	ND	ND
25	7-10'	4316.15	3/3/99	ND	ND	ND	ND
26	7-10'	4316.22	3/3/99	ND	ND	ND	ND
27	7-10'	4316.29	3/3/99	ND	ND	ND	ND
27A	7-11'	4903.33	11/1/99	ND	ND	ND	ND
27B	8-11'	4963.46	11/23/99	ND	ND	ND	ND
Field Dup	7-11'	4903.41	11/1/99	ND	ND	ND	ND

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

* Regulatory level shown is higher of PQL and Ground Water Criteria (GWQC) as per NJAC 7:9-6.

Exceedances of the GWQC are highlighted and printed in **bold-faced** type.


Boring	Depth	Lab I.D.	Sample Date	Arochlor 1016	Arochlor 1242	Arochlor 1260	Total PCB
Regulatory Level			Sample Date	0.50	0.50	0.50	0.50
24B Field Dup	8-11'	4965.28	11/24/99	ND	ND	ND	ND
Field Blank	-	4281.02	2/17/99	ND	ND	ND	ND
Field Blank	-	4285.01	2/19/99	ND	ND	ND	ND
Field Blank	-	4290.01	2/22/99	ND	ND	ND	ND
Field Blank	-	4294.01	2/23/99	ND	ND	ND	ND
Field Blank	-	4299.01	2/24/99	ND	ND	ND	ND
Field Blank	-	4313.01	3/2/99	ND	ND	ND	ND
Field Blank	-	4316.01	3/3/99	ND	ND	ND	ND
Field Blank	-	4320.01	3/5/99	ND	ND	ND	ND
Field Blank	-	4897.01	10/29/99	ND	ND	ND	ND
Field Blank	-	4903.01	11/1/99	ND	ND	ND	ND
Field Blank	-	4963.01	11/23/99	ND	ND	ND	ND
Field Blank	-	4965.01	11/24/99	ND	ND	ND	ND

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

* Regulatory level shown is higher of PQL and Ground Water Criteria (GWQC) as per NJAC 7:9-6.

Exceedances of the GWQC are highlighted and printed in **bold-faced** type.

			Sample			Chloro-		Ethyl-	Total				
Boring	Depth	Lab I.D.	Date	MeCl	Carbon DI	benzene	Benzene	benzene	Xylenes	2-Butanone	Toluene	Acetone	Chloroform
NJDEP RDO	CSCC*			49	NLE	37	3	1000	410	1000	1000	1000	19
31	78"	4328.03	3/8/99	2.6	ND	ND	ND	ND	ND	ND	ND	ND	ND
32	78"	4328.05	3/8/99	2.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
33	78"	4328.07	3/8/99	0.510 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
34	78"	4332.03	3/9/99	0.940	ND	ND	ND	ND	ND	ND	ND	ND	ND
35	36"	4332.05	3/9/99	ND	ND	2.8	ND	ND	ND	ND	ND	ND	ND
36	42"	4332.07	3/9/99	0.85	ND	0.72	ND	ND	ND	ND	ND	ND	ND
37	78"	4332.09	3/9/99	0.82	ND	ND	ND	ND	ND	ND	ND	ND	ND
38	78"	4334.03	3/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
39	78"	4334.05	3/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
40	78"	4334.07	3/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
41	78"	4334.09	3/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
42	78"	4334.11	3/10/99	ND	ND	1.0	ND	ND	ND	ND	ND	ND	ND
43	78"	4339.03	3/11/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
44	78"	4339.05	3/11/99	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND
45	78"	4350.03	3/16/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
46	72"	4350.05	3/16/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
47	72"	4350.07	3/16/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
48	72"	4350.09	3/16/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
49	72"	4355.03	3/17/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
50	72"	4355.05	3/17/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
51	72"	4355.07	3/17/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
52	72"	4355.09	3/17/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
53	72"	4355.11	3/17/99	3.8	ND	ND	ND	ND	ND	ND	ND	ND	ND
54	72"	4355.13	3/17/99	0.8	ND	ND	ND	ND	ND	ND	ND	ND	ND
55	72"	4355.15	3/17/99	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	72"	4355.17	3/17/99	0.56 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
56	72"	4358.03	3/18/99	ND	1.5	1.4	ND	ND	ND	ND	ND	ND	ND
57	72"	4358.05	3/18/99	ND	ND	0.43	ND	ND	ND	ND	ND	ND	ND
58	72"	4358.07	3/18/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
59	72"	4358.09	3/18/99	ND	ND	2.7	ND	ND	ND	ND	ND	ND	ND
59A	72"	4368.03	3/23/99	ND	ND	3.7	ND	ND	ND	ND	ND	ND	ND
60	72"	4368.05	3/23/99	ND	ND	1.00	ND	ND	0.710 J	ND	ND	ND	ND
61	72"	4368.07	3/23/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
62	39"	4368.09	3/23/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
63	72"	4368.11	3/23/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
64	72"	4368.13	3/23/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
65	72"	4368.15	3/23/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES:

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

*NJDEP RDCSCC - NJDEP Residential Direct Contact Soil Cleanup Criteria

Exceedances of the NJDEP RDCSCC are highlighted and printed in **bold-faced** type.

J: Compound Identified Below Detection Limit

ND: Not Detected

NLE: No regulatory limit has been established for this parameter.

Page 1 of 6

			Sample			Chloro-		Ethyl-	Total				
Boring	Depth	Lab I.D.	Date	MeCl	Carbon DI	benzene	Benzene	benzene	Xylenes	2-Butanone	Toluene	Acetone	Chloroform
NJDEP RD	CSCC*			49	NLE	37	3	1000	410	1000	1000	1000	19
66	78"	4381.03	3/30/99	ND	ND	ND	0.43	ND	ND	ND	ND	ND	ND
67	78"	4381.05	3/30/99	ND	ND	0.51	ND	0.4 J	0.55	ND	ND	ND	ND
68	48"	4381.07	3/30/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
69	48"	4381.09	3/30/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
70	78"	4381.11	3/30/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
71	72"	4396.03	4/6/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
72	66"	4396.05	4/6/99	ND	ND	ND	0.600	0.680 J	2.75	ND	0.420	ND	ND
73	66"	4396.07	4/6/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
74	72"	4407.03	4/9/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
75	72"	4407.05	4/9/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
76	48"	4407.07	4/9/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	48"	4407.09	4/9/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
77	78"	4414.03	4/13/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
78	78"	4414.05	4/13/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
79	42"	4414.07	4/13/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
80	54"	4414.09	4/13/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
81	66"	4417.03	4/14/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
82	46"	4417.05	4/14/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
83	90"	4417.07	4/14/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
84	90"	4417.09	4/14/99	1.6	ND	ND	0.62	0.41 J	2.5	ND	2	ND	ND
85	90"	4417.11	4/14/99	ND	ND	ND	0.68	ND	ND	ND	ND	ND	ND
86	90"	4417.13	4/14/99	ND	ND	ND	0.47	ND	ND	ND	ND	ND	ND
87	60"	4422.03	4/16/99	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND
88	46"	4422.05	4/16/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
89	72"	4422.07	4/16/99	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
90	72"	4422.09	4/16/99	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND
91	72"	4422.11	4/16/99	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
92	90"	4433.03	4/21/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
93	72"	4433.05	4/21/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
94	72"	4433.07	4/21/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
95	90"	4433.09	4/21/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
96	90"	4433.11	4/21/99	ND	ND	2.5	ND	ND	ND	ND	ND	ND	ND
97	78"	4442.03	4/26/99	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND
98	78"	4442.05	4/26/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
99	66"	4442.07	4/26/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
100	60"	4442.09	4/26/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
101	108"	4442.11	4/26/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES:

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

*NJDEP RDCSCC - NJDEP Residential Direct Contact Soil Cleanup Criteria

Exceedances of the NJDEP RDCSCC are highlighted and printed in **bold-faced** type.

J: Compound Identified Below Detection Limit

ND: Not Detected

Boring	-		Sample			Chloro-		Ethyl-	Total				
	Depth	Lab I.D.	Date	MeCl	Carbon DI	benzene	Benzene	benzene	Xylenes	2-Butanone	Toluene	Acetone	Chloroform
NJDEP RDC	CSCC*			49	NLE	37	3	1000	410	1000	1000	1000	19
102	90"	4445.03	4/27/99	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
103	90"	4445.05	4/27/99	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND
104	96"	4445.07	4/27/99	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND
105	60"	4445.09	4/27/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
106	72"	4445.11	4/27/99	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND
107	108"	4445.13	4/27/99	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	90"	4445.15	4/27/99	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND
108	60"	4461.03	5/4/99	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
109	60"	4461.05	5/4/99	1.1	ND	ND	0.34	ND	ND	ND	ND	ND	ND
110	60"	4461.07	5/4/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
111	48"	4461.09	5/4/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
112	48"	4461.11	5/4/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
113	60"	4465.03	5/6/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
114	60"	4465.05	5/6/99	ND	ND	ND	ND	ND	ND	ND	ND	4.6	ND
115	60"	4465.07	5/6/99	ND	ND	ND	ND	ND	ND	ND	ND	5.0	ND
116	60"	4465.09	5/6/99	ND	ND	ND	ND	ND	ND	ND	ND	5.1	ND
117	54"	4465.11	5/6/99	ND	ND	ND	ND	ND	ND	ND	ND	5.5	ND
118	54"	4465.13	5/6/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	60"	4465.15	5/6/99	ND	ND	ND	ND	ND	ND	ND	ND	5.9	ND
64A	90"	4912.03	11/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
65A	90"	4912.05	11/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
66A	90"	4912.07	11/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
67A	90"	4912.09	11/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
68A	90"	4912.11	11/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
69A	90"	4912.13	11/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
64B	90"	4915.03	11/4/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
65B	90"	4915.05	11/4/99	0.99	ND	ND	ND	ND	ND	ND	ND	ND	ND
66B	90"	4915.07	11/4/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
67B	90"	4915.09	11/4/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
68B	90"	4915.11	11/4/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
69B	90"	4915.13	11/4/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
113A	90"	4931.03	11/8/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
114A	90"	4931.05	11/8/99	ND	ND	0.77	ND	ND	ND	ND	ND	ND	ND
115A	90"	4931.07	11/8/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116A	90"	4931.09	11/8/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117A	90"	4933.03	11/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
114B	90"	4933.05	11/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES:

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

*NJDEP RDCSCC - NJDEP Residential Direct Contact Soil Cleanup Criteria

Exceedances of the NJDEP RDCSCC are highlighted and printed in **bold-faced** type.

J: Compound Identified Below Detection Limit

ND: Not Detected

– •			Sample			Chloro-		Ethyl-	Total				
Boring	Depth	Lab I.D.	Date	MeCl	Carbon DI	benzene	Benzene	benzene	Xylenes	2-Butanone	Toluene	Acetone	Chloroform
NJDEP RDC	SCC*			49	NLE	37	3	1000	410	1000	1000	1000	19
115B	90"	4933.07	11/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116B	90"	4933.09	11/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117B	90"	4933.11	11/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
118B	90"	4933.13	11/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	90"	4933.15	11/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
114C	90"	4968.03	11/30/99	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND
115C	90"	4968.05	11/30/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116C	90"	4968.07	11/30/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117C	90"	4968.09	11/30/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
118C	90"	4968.11	11/30/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
119C	90"	4968.13	11/30/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
113D	90"	4971.03	12/1/99	ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND
114D	90"	4971.05	12/1/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
115D	90"	4971.07	12/1/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116D	90"	4971.09	12/1/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117D	90"	4971.11	12/1/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.35
118D	90"	4972.03	12/2/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
113E	90"	4972.05	12/2/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.39
114E	90"	4972.07	12/2/99	ND	ND	ND	ND	1.1	4	ND	0.54	ND	0.49
115E	90"	4972.09	12/2/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116E	90"	4972.11	12/2/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	90"	4972.13	12/2/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117E	90"	4979.03	12/3/99	5.0	ND	ND	ND	ND	ND	ND	ND	ND	0.31
118E	90"	4979.05	12/3/99	1.2	ND	ND	ND	ND	ND	ND	ND	ND	0.29
64C	96"	4979.07	12/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
65C	96"	4979.09	12/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
66C	96"	4979.11	12/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
67C	96"	4979.13	12/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
68C	96"	4979.15	12/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
64D	96"	4990.03	12/6/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
65D	96"	4990.05	12/6/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
66D	96"	4990.07	12/6/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
67D	96"	4990.09	12/6/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
68D	96"	4995.03	12/7/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.55
64E	96"	4995.05	12/7/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.43
65E	96"	4995.07	12/7/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.34
66E	96"	4995.09	12/7/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.33

NOTES:

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

*NJDEP RDCSCC - NJDEP Residential Direct Contact Soil Cleanup Criteria

Exceedances of the NJDEP RDCSCC are highlighted and printed in **bold-faced** type.

J: Compound Identified Below Detection Limit

ND: Not Detected

			Sample			Chloro-		Ethyl-	Total				
Boring	Depth	Lab I.D.	Date	MeCl	Carbon DI	benzene	Benzene	benzene	Xylenes	2-Butanone	Toluene	Acetone	Chloroform
NJDEP RD	CSCC*			49	NLE	37	3	1000	410	1000	1000	1000	19
67E	96"	4995.11	12/7/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.41
Field Dup	96"	4995.13	12/7/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.44
113F	32-42"	5058.03	1/3/00	ND	ND	ND	ND	ND	ND	6.7	ND	ND	0.55
113F	60-66"	5058.04	1/3/00	ND	ND	ND	ND	ND	ND	7.3	ND	ND	0.76
114F	30-36"	5058.05	1/3/00	ND	ND	ND	ND	ND	ND	7.6	ND	ND	0.86
114F	60-66"	5058.06	1/3/00	ND	ND	ND	ND	ND	ND	7.5	ND	ND	0.83
115F	36-42"	5058.07	1/3/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
115F	54-60"	5058.08	1/3/00	ND	ND	ND	ND	ND	ND	6.2	ND	ND	0.77
115F	60-66"	5058.09	1/3/00	ND	ND	ND	ND	ND	ND	7.2	ND	ND	0.84
116F	12-18"	5058.10	1/3/00	ND	ND	ND	ND	ND	ND	7.00	ND	ND	0.78
116F	60-66"	5058.11	1/3/00	ND	ND	ND	ND	ND	ND	5.00	ND	ND	0.52
117F	30-36"	5058.12	1/3/00	0.67	ND	ND	ND	ND	ND	4.9	ND	ND	0.59
117F	72-78"	5058.13	1/3/00	0.37 J	ND	ND	ND	ND	ND	4.5	ND	ND	0.68
118F	36-42"	5058.14	1/3/00	ND	ND	ND	ND	ND	ND	4.7	ND	ND	0.67
118F	60-66"	5058.15	1/3/00	ND	ND	ND	ND	ND	ND	4.5	ND	ND	0.74
113G	30-36"	5064.03	1/4/00	0.64	ND	ND	ND	ND	ND	1.7	ND	ND	1.4
113G	60-66"	5064.04	1/4/00	ND	ND	ND	ND	ND	ND	1.6	ND	2.3	1.5
113G	66-72"	5064.05	1/4/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6
114G	60-66"	5064.06	1/4/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.0
115G	18-24'	5064.07	1/4/00	ND	ND	ND	ND	ND	ND	1.4	ND	ND	1.5
115G	72-78"	5064.08	1/4/00	ND	ND	ND	ND	ND	ND	1.6	ND	2.4	1.7
116G	72-78"	5064.09	1/4/00	ND	ND	ND	ND	ND	ND	1.5	ND	ND	1.5
117G	18-24"	5064.10	1/4/00	ND	ND	ND	ND	ND	ND	1.5	ND	ND	1.3
117G	72-78"	5064.11	1/4/00	ND	ND	ND	ND	ND	ND	1.6	ND	2.6	1.6
118G	30-36"	5064.18	1/4/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9
118G	42-48"	5064.19	1/4/00	ND	ND	ND	ND	ND	ND	1.5	ND	2.5	1.6
115H	36-42"	5072.03	1/5/00	ND	ND	ND	ND	ND	ND	1.4	ND	2.8	0.40
115H	60-66"	5072.04	1/5/00	ND	ND	ND	ND	ND	ND	2.2	ND	4.7	0.52
116H	36-42"	5072.05	1/5/00	ND	ND	ND	ND	ND	ND	1.4	ND	2.8	0.44
116H	54-60"	5072.06	1/5/00	ND	ND	ND	ND	ND	ND	1.7	ND	3.5	0.52
116H	72-78"	5072.07	1/5/00	ND	ND	ND	ND	ND	ND	1.7	ND	3.5	0.50
117H	24-30"	5072.08	1/5/00	ND	ND	ND	ND	ND	ND	1.5	ND	3.3	0.44
117H	54-60"	5072.09	1/5/00	ND	0.99	ND	ND	ND	ND	4.5	ND	10	1.3
117H	60-66"	5072.10	1/5/00	ND	ND	ND	ND	ND	ND	1.8	ND	3.3	ND
118H	18-24"	5072.11	1/5/00	ND	ND	ND	ND	ND	ND	1.8	ND	4.2	0.42
118H	36-42"	5072.12	1/5/00	ND	ND	ND	ND	ND	ND	2.4	ND	5.3	0.52
113H	48-54"	5072.13	1/5/00	ND	ND	ND	ND	ND	ND	2.0	ND	4.3	0.54

NOTES:

Only detected compounds are listed.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

*NJDEP RDCSCC - NJDEP Residential Direct Contact Soil Cleanup Criteria

Exceedances of the NJDEP RDCSCC are highlighted and printed in **bold-faced** type.

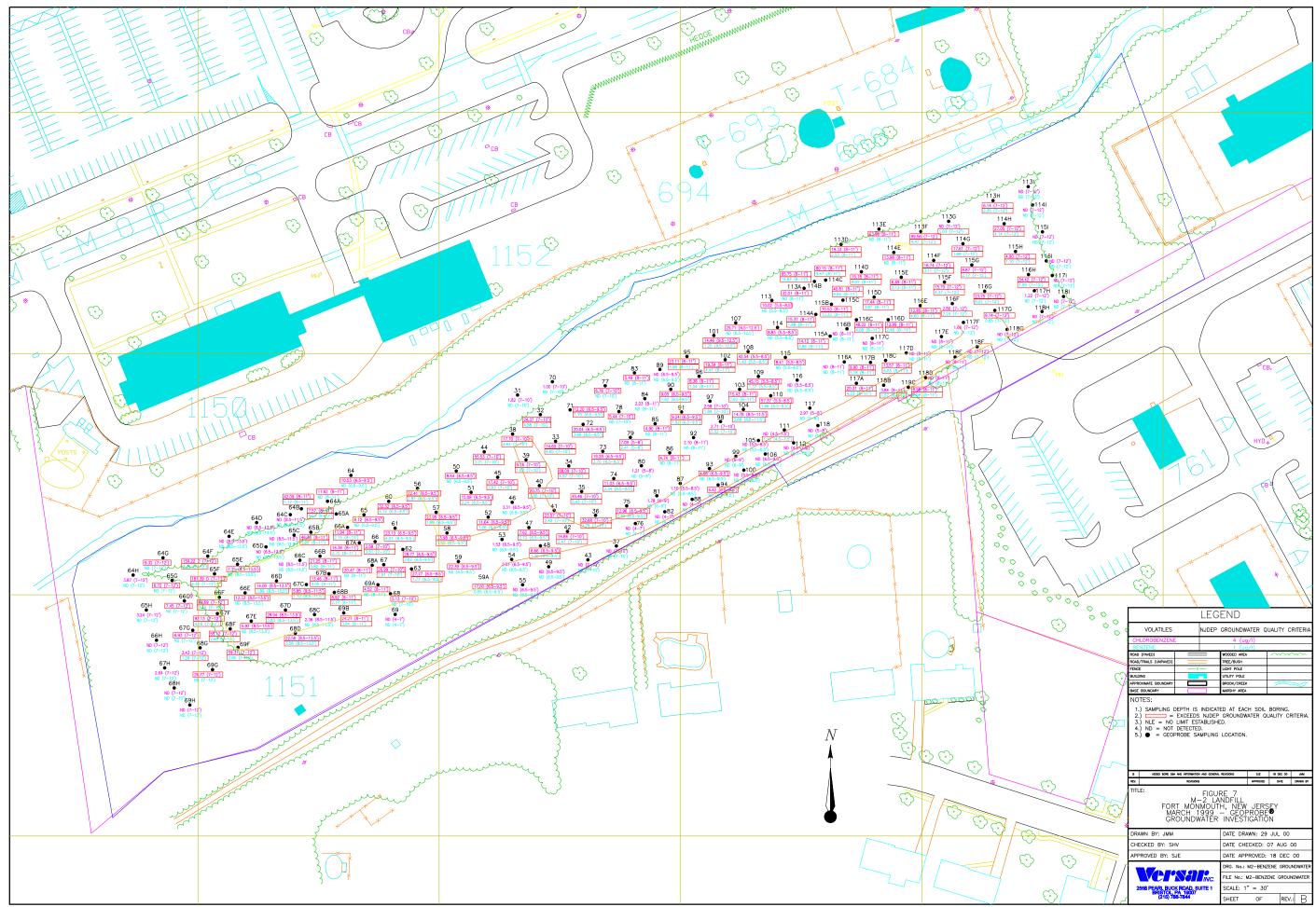
J: Compound Identified Below Detection Limit

ND: Not Detected

			Sample			Chloro-	_	Ethyl-	Total			-	
Boring	Depth	Lab I.D.	Date	MeCl	Carbon DI	benzene	Benzene	benzene	Xylenes 410	2-Butanone	Toluene 1000	Acetone	Chloroform 19
NJDEP RD		•		49	NLE	37	3	1000	-	1000		1000	-
113H	54-60"	5072.14	1/5/00	ND	ND	0.84	ND	ND	ND	2.7	ND	5.6	0.93
114H	24-30"	5072.15	1/5/00	ND	ND	ND	ND	ND	ND	ND	ND	3.5	0.56
114H	54-60'	5072.16	1/5/00	ND	ND	ND	ND	ND	ND	1.7	ND	3.6	0.59
114H	60-66"	5072.17	1/5/00	ND	ND	ND	ND	ND	ND	1.5	ND	ND	0.33
1181	54-60"	5075.03	1/6/00	ND	ND	ND	ND	ND	ND	1.4	ND	2.7	0.55
1161	54-60"	5075.04	1/6/00	ND	ND	ND	ND	ND	ND	4.6	ND	9.5	0.98
1131	54-60"	5075.05	1/6/00	ND	ND	ND	ND	ND	ND	1.7	ND	ND	0.81
1141	54-60"	5075.06	1/6/00	ND	ND	ND	ND	ND	ND	1.5	ND	ND	0.63
1151	54-60"	5075.07	1/6/00	ND	ND	ND	ND	ND	ND	ND	ND	5.1	0.68
1171	54-60"	5075.08	1/6/00	ND	ND	ND	ND	ND	ND	1.3	ND	ND	0.62
67F	24-30"	5085.02	1/10/00	ND	ND	ND	ND	ND	ND	1.2	ND	2.4	0.49
67F	48-54"	5085.03	1/10/00	ND	ND	ND	ND	ND	ND	0.99	ND	1.7	0.48
65F	48-54"	5085.04	1/10/00	ND	ND	5.1	ND	ND	ND	1.6 J	ND	2.8	0.86
64F	48-54"	5085.05	1/10/00	ND	ND	ND	ND	ND	ND	0.97	ND	1.8	0.44
66F	48-54"	5085.06	1/10/00	ND	ND	6.0	ND	ND	ND	1.0	ND	2.0	0.51
68F	78-84"	5091.03	1/11/00	3.0	ND	5.0	ND	ND	ND	2.4	ND	5.3	1.2
69F	78-84"	5091.04	1/11/00	1.1	ND	ND	ND	ND	ND	1.2	ND	3.0	0.53
64G	84-90"	5091.05	1/11/00	0.94	ND	ND	ND	ND	ND	1.1	ND	2.3	0.49
65G	84-90"	5091.06	1/11/00	0.81	ND	ND	ND	ND	ND	1.8	ND	3.9	0.55
66G	80-86"	5091.07	1/11/00	0.84	ND	ND	ND	ND	ND	0.88 J	ND	1.7	0.5
67G	78-84"	5091.08	1/11/00	0.96	ND	ND	ND	ND	ND	ND	ND	2.0	0.51
69G	60-66"	5096.03	1/12/00	ND	ND	ND	ND	ND	0.35 J	ND	ND	ND	0.87
68G	60-66"	5096.04	1/12/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.86
64H	60-66"	5096.05	1/12/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5
65H	60-66"	5096.06	1/12/00	ND	ND	ND	ND	ND	ND	ND	ND	4.1	1.0
66H	60-66"	5096.07	1/12/00	ND	ND	ND	ND	ND	ND	ND	ND	3.2	0.85
67H	60-66"	5096.08	1/12/00	ND	ND	ND	ND	ND	ND	ND	ND	4.9	1.4
H68	18-24"	5102.03	1/13/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
H68	60-66"	5102.04	1/13/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
H69	60-66"	5102.05	1/13/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOTES					1								

NOTES:

Only detected compounds are listed.


All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

*NJDEP RDCSCC - NJDEP Residential Direct Contact Soil Cleanup Criteria

Exceedances of the NJDEP RDCSCC are highlighted and printed in **bold-faced** type.

J: Compound Identified Below Detection Limit

ND: Not Detected

Appendix C Historical Information

Boring	Depth	Lab I.D.	Sample Date	MeCl	Carbon DiSulfide	Chloro- benzene	Benzene	Ethyl- benzene	Total Xylenes	Toluene	Acetone	Chlorofor m	1.4-DCB	1.2-DCB	1,3-DCB	PCE	TCE	Vinyl Chloride	trans-1,2- DCE	cis-1,2- DCE	2- Butanone	tert-Butyl alcohol	Methyl- tert-Butyl ether
Regula	tory Level			2	NLE	4	1	700	40	1000	700	6	75	600	600	1	1	5	100	10	1000	NLE	NLE
31	7-10'	4328.04	3/8/99	ND	ND	1.82	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
32	7-10'	4328.06	3/8/99	ND	ND	24.37	4.58	ND	ND	ND	ND	ND	4.70	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
33	7-10'	4328.08	3/8/99	ND	ND	14.60	4.65	ND	ND	ND	ND	ND	2.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
34	7-10'	4332.04	3/9/99	ND	ND	68.09	4.97	ND	ND	ND	ND	ND	10.14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
35	7-10'	4332.06	3/9/99	ND	ND	45.46	5.43	ND	ND	ND	ND	ND	7.70	ND	2.81	ND	ND	ND	ND	ND	ND	ND	ND
36	7-10'	4332.08	3/9/99	ND	ND	32.68	1.76	ND	ND	ND	ND	ND	9.57	ND	2.61	ND	ND	ND	ND	ND	ND	ND	ND
37	7-10'	4332.10	3/9/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
38	7-10'	4334.04	3/10/99	ND	ND	17.70	4.64	1.12	7.82	ND	ND	ND	4.19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
39	7-10'	4334.06	3/10/99	ND	ND	9.16	1.63	ND	ND	ND	ND	ND	2.90	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
40	7-10'	4334.08	3/10/99	ND	ND	20.75	3.60	ND	ND	ND	ND	ND	4.39	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
41	7-10'	4334.10	3/10/99	ND	ND	23.57	2.43	ND	ND	ND	ND	ND	7.52	ND	1.70	ND	ND	ND	ND	ND	ND	ND	ND
42	7-10'	4334.12	3/10/99	ND	ND	14.84	2.47	ND	ND	ND	ND	ND	5.78	ND	1.21	ND	ND	ND	ND	ND	ND	ND	ND
43	7-10'	4339.04	3/11/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
44	7-10'	4339.06	3/11/99	ND	ND	55.53	3.21	ND	ND	ND	ND	ND	5.58	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
45	7-10'	4350.04	3/16/99	ND	ND	17.42	3.03	ND	ND	ND	ND	ND	2.24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
46	6.5-9.5'	4350.06	3/16/99	ND	ND	3.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
47	6.5-9.5'	4350.08	3/16/99	ND	ND	7.62	2.72	ND	ND	ND	ND	ND	3.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
48	6.5-9.5'	4350.10	3/16/99	ND	ND	6.66	1.30	ND	ND	ND	ND	ND	5.16	ND	ND	6.51	16.71	15.75	2.62	72.00	ND	ND	ND
49	6.5-9.5'	4355.04	3/17/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
50	6.5-9.5'	4355.06	3/17/99	ND	ND	8.64	ND	ND	ND	1.06	ND	ND	3.22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
51	6.5-9.5'	4355.08	3/17/99	ND	ND	15.08	2.24	ND	ND	ND	ND	ND	5.51	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
52	6.5-9.5'	4355.10	3/17/99	ND	ND	11.64	1.26	ND	ND	ND	ND	ND	3.80	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
53	6.5-9.5'	4355.12	3/17/99	ND	ND	1.53	ND	ND	ND	ND	ND	ND	1.84	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
54	6.5-9.5'	4355.14	3/17/99	ND	ND	2.57	ND	ND	ND	ND	ND	ND	3.22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
55	6.5-9.5'	4355.16	3/17/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	6.5-9.5'	4355.18	3/17/99	ND	ND	11.68	1.32	ND	ND	ND	ND	ND	4.14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
56	6.5-9.5'	4358.04	3/18/99	ND	ND	22.41	2.87	ND	ND	ND	ND	ND	4.66	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
57	6.5-9.5'	4358.06	3/18/99	ND	ND	23.95	1.88	ND	ND	ND	ND	ND	2.45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
58	6.5-9.5'	4358.08	3/18/99	ND	ND	33.98	1.50	ND	ND	ND	ND	ND	3.24	ND	2.09	ND	ND	ND	ND	ND	ND	ND	ND
59	6.5-9.5'	4358.10	3/18/99	ND	ND	22.39	ND	ND	ND	ND	ND	ND	7.66	ND	1.91	ND	ND	ND	ND	ND	ND	ND	ND
59A	6.5-9.5'	4368.04	3/23/99	ND	ND	17.00	0.55	ND	ND	ND	ND	ND	5.42	ND	1.49	ND	ND	ND	ND	ND	ND	ND	ND
60	6.5-9.5'	4368.06	3/23/99	ND	ND	32.32	4.14	ND	ND	ND	ND	ND	4.73	1.10	1.38	ND	ND	ND	ND	ND	ND	ND	ND
61	6.5-9.5'	4368.08	3/23/99	ND	ND	23.13	4.01	ND	ND	ND	ND	ND	4.15	0.93	0.84	ND	ND	ND	ND	ND	ND	ND	ND
62	6.5-9.5'	4368.10	3/23/99	ND	ND	28.77	2.02	ND	ND	ND	ND	ND	2.96	ND	1.12	ND	ND	ND	ND	ND	ND	ND	ND
63	6.5-9.5'	4368.12	3/23/99	ND	ND	27.77	1.77	ND	ND	ND	ND	ND	3.00	ND	1.28	ND	ND	ND	ND	ND	ND	ND	ND
64	6.5-9.5'	4368.14	3/23/99	ND	ND	10.53	ND	ND	ND	ND	ND	ND	1.73	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
65 NOTES	6.5-9.5'	4368.16	3/23/99	ND	ND	6.12	ND	ND	ND	ND	ND	ND	1.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

* Regulatory level shown is higher of PQL and Ground Water Quality Criteria as per NJAC 7;9-6

Exceedances of the NJDEP GWQC are highlighted and printed in **bold-faced** type.

D = Results are from a Dilution of the Sample

J = compound Identified Below Detection Limit

ND: Not Detected

NLE: No regulatory limit has been established for this parameter.

Boring	Depth	Lab I.D.	Sample Date	MeCl	Carbon DiSulfide	Chloro- benzene	Benzene	Ethyl- benzene	Total Xylenes	Toluene	Acetone	Chlorofor m	1,4-DCB	1,2-DCB	1,3-DCB	PCE	TCE	Vinyl Chloride	trans-1,2- DCE	cis-1,2- DCE	2- Butanone	tert-Butyl alcohol	Methyl- tert-Butyl ether
Regul	atory Level	(ug/L)*		2	NLE	4	1	700	40	1000	700	6	75	600	600	1	1	5	100	10	1000	NLE	NLE
66	7-10'	4381.04	3/30/99	ND	ND	2.58	3.51	3.15	6.29	1.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
67	7-10'	4381.06	3/30/99	ND	ND	26.99	2.91	ND	ND	ND	ND	ND	6.65	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
68	7-10'	4381.08	3/30/99	ND	ND	5.13	ND	ND	ND	ND	ND	ND	2.87	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
69	4-7'	4381.10	3/30/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
70	7-10'	4381.12	3/30/99	ND	ND	1.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
71	6.5-9.5'	4396.04	4/6/99	ND	ND	12.20	1.75	ND	ND	ND	ND	ND	1.39	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
72	6-9'	4396.06	4/6/99	ND	ND	20.04	3.66	ND	ND	ND	ND	ND	2.84	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
73	6-9'	4696.08	4/6/99	ND	ND	19.28	3.70	ND	1.68	5.65	ND	ND	3.03	ND	1.02	ND	ND	ND	ND	ND	ND	ND	ND
74	6.5-9.5'	4407.04	4/9/99	ND	ND	11.03	2.34	ND	ND	ND	ND	ND	3.13	ND	3.20	ND	ND	ND	ND	ND	ND	ND	ND
75	6.5-9.5'	4407.06	4/9/99	ND	ND	12.96	2.39	ND	ND	ND	ND	ND	3.48	1.12	1.09	ND	ND	ND	ND	ND	ND	ND	ND
76	4-7'	4407.08	4/9/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	4-7'	4407.10	4/9/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
77	7-10'	4414.04	4/13/99	ND	ND	6.76	ND	ND	ND	ND	ND	ND	2.10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
78	7-10'	4414.06	4/13/99	ND	1.25	5.44	ND	ND	ND	ND	ND	ND	1.35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
79	5-8'	4414.08	4/13/99	ND	ND	7.09	2.41	ND	ND	ND	ND	ND	1.64	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
80	5-8'	4414.10	4/13/99	ND	ND	1.21	ND	ND	ND	ND	24.26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
81	6-9'	4417.04	4/14/99	ND	ND	1.78	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
82	4-7'	4417.06	4/14/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
83	8-11'	4417.08	4/14/99	ND	ND	5.49	ND	ND	ND	ND	ND	ND	1.90	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
84	8-11'	4417.10	4/14/99	ND	ND	2.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
85	8-11'	4417.12	4/14/99	ND	ND	4.90	ND	ND	ND	ND	ND	ND	1.07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
86	8-11'	4417.14	4/14/99	ND	ND	4.74	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
87	5.5-8.5'	4422.04	4/16/99	ND	ND	1.10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
88	4-7'	4422.06	4/16/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
89	6.5-9.5'	4422.08	4/16/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
90	6.5-9.5'	4422.10	4/16/99	ND	ND	9.05	1.62	ND	ND	ND	ND	ND	2.24	ND	2.29	ND	ND	ND	ND	ND	ND	ND	ND
91	6.5-9.5'	4422.12	4/16/99	ND	ND	9.24	1.92	ND	ND	ND	ND	ND	3.32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
92	8-11'	4433.04	4/21/99	ND	ND	2.10	ND	ND	ND	ND	ND	ND	2.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
93	6.5-9.5'	4433.06	4/21/99	ND	ND	4.88	ND	ND	ND	ND	ND	ND	3.73	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
94	6.5-9.5'	4433.08	4/21/99	ND	ND	4.42	ND	ND	ND	ND	ND	ND	3.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
95	8-11'	4433.10	4/21/99	ND	2.05	23.11	4.08	ND	ND	ND	ND	ND	3.13	1.47	1.27	ND	ND	ND	ND	ND	ND	ND	ND
96	8-11'	4433.12	4/21/99	ND	ND	8.38	1.54	ND	ND	ND	ND	ND	1.54	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
97	7-10'	4442.04	4/26/99	ND	ND	2.58	1.89	ND	ND	ND	7.64	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
98	7-10'	4442.06	4/26/99	ND	ND	2.71	2.02	ND	ND	ND	9.16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
99	6-9'	4442.08	4/26/99	ND	ND	ND	ND	ND	ND	ND	10.23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
100	5.5-8.5'	4442.10	4/26/99	ND	ND	ND	ND	ND	ND	ND	11.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
101	9.5-12.5'	4442.12	4/26/99	ND	ND	14.46	1.20	ND	ND	ND	12.94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOTES																							

NOTES

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

* Regulatory level shown is higher of PQL and Ground Water Quality Criteria as per NJAC 7;9-6

Exceedances of the NJDEP GWQC are highlighted and printed in **bold-faced** type.

D = Results are from a Dilution of the Sample

J = compound Identified Below Detection Limit

ND: Not Detected

NLE: No regulatory limit has been established for this parameter.

Boring	Depth	Lab I.D.	Sample Date	MeCl	Carbon DiSulfide	Chloro- benzene	Benzene	Ethyl- benzene	Total Xylenes	Toluene	Acetone	Chlorofor m	1,4-DCB	1.2-DCB	1,3-DCB	PCE	TCE	Vinyl Chloride	trans-1,2- DCE	cis-1,2- DCE	2- Butanone	tert-Butyl alcohol	Methyl- tert-Butyl ether
	atory Level		Date	2	NLE	4	1	700	40	1000	700	6	75	600	600	1	1	5	100	10	1000	NLE	NLE
102	8-11'	4445.04	4/27/99	ND	ND	19.39	4.41	ND	ND	1.68	ND	ND	3.89	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
102	8-11'	4445.06	4/27/99	ND	ND	15.43	2.62	ND	ND	1.15	4.82	ND	4.37	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8.5-11.5'	4445.08	4/27/99	ND	1.72	14.78	3.68	ND	ND	ND	8.05	ND	9.00	1.63	1.17	ND	ND	ND	ND	ND	2.46	ND	ND
105	5.5-8.5'	4445.10	4/27/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
106	6.5-9.5'	4445.12	4/27/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
107	9.5-12.5'	4445.144	4/27/99	ND	ND	25.71	ND	ND	ND	ND	ND	ND	4.40	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	8-11'	4445.16	4/27/99	ND	ND	16.63	3.01	ND	ND	1.35	4.74	ND	3.52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
108	5.5-8.5'	4461.04	5/4/99	ND	ND	42.54	1.43	ND	ND	ND	9.08	ND	3.96	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
109	5.5-8.5'	4461.06	5/4/99	ND	ND	45.15	1.37	ND	ND	ND	7.72	ND	7.52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
110	5.5-8.5'	4461.08	5/4/99	ND	ND	57.37	1.66	ND	ND	ND	2.39	ND	8.90	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
111	4.5-7.5'	4461.10	5/4/99	ND	ND	ND	1.12	ND	ND	ND	3.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
112	4.5-7.5'	4461.12	5/4/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
113	5.5-8.5'	4465.04	5/6/99	ND	ND	10.02	ND	ND	ND	ND	ND	ND	2.17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
114	5.5-8.5'	4465.06	5/6/99	ND	ND	8.83	ND	ND	ND	ND	ND	ND	1.89	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
115	5.5-8.5'	4465.08	5/6/99	ND	ND	8.41	ND	ND	ND	ND	ND	ND	2.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116	5.5-8.5'	4465.10	5/6/99	ND	ND	ND	ND	ND	ND	ND	4.34	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117	5-8'	4465.12	5/6/99	ND	ND	2.97	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
118	5-8'	4465.14	5/6/99	ND	ND	ND	ND	ND	ND	ND	2.43	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	5.5-8.5'	4465.16	5/6/99	ND	ND	9.66	ND	ND	ND	ND	ND	ND	2.44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
64A	8-11'	4912.04	11/3/99	ND	ND	11.62	ND	ND	ND	ND	12.02	ND	1.39	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
65A	8-11'	4912.06	11/3/99	ND	ND	7.57	1.17	ND	ND	ND	ND	ND	2.71	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
66A	8-11'	4912.08	11/3/99	ND	ND	11.94	2.15	1.42	2.49	1.62	53.79	ND	1.90	ND	ND	ND	ND	ND	ND	ND	186.75 D	ND	ND
67A	8-11'	4912.10	11/3/99	ND	ND	16.36	2.75	ND	3.93	1.31	ND	ND	3.17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
68A	8-11'	4912.12	11/3/99	ND	ND	20.47	ND	ND	ND	ND	ND	ND	2.37	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
69A	8-11'	4912.14	11/3/99	ND	ND	4.52	ND	ND	1.39	ND	ND	ND	2.41	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
64B	8-11'	4915.04	11/4/99	ND	ND	42.09	1.12	ND	ND	ND	ND	ND	3.72	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
65B	8-11'	4915.06	11/4/99	ND	ND	46.35	1.25	ND	ND	ND	ND	ND	3.94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
66B	8-11'	4915.08	11/4/99	ND	ND	21.25	3.82	ND	ND	ND	ND	ND	4.13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
67B	8-11'	4915.10	11/4/99	ND	1.10	13.46	4.05	ND	ND	ND	ND	ND	3.69	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
68B	8-11'	4915.12	11/4/99	ND	ND	8.92	2.17	ND	ND	ND	ND	ND	2.95	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
69B	8-11'	4915.14	11/4/99	ND	1.71	24.21	3.84	ND	ND	ND	ND	ND	4.76	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
113A	8-11'	4931.04	11/8/99	ND	ND	32.01	ND	ND	ND	ND	ND	ND	10.36	2.27	1.88	ND	ND	ND	ND	ND	ND	ND	ND
114A	8-11'	4931.06	11/8/99	ND	ND	15.37	1.88	ND	ND	ND	10.39	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
115A	8-11'	4931.08	11/8/99	ND	ND	14.12	3.86	ND	ND	ND	ND	ND	1.42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116A	8-11'	4931.10	11/8/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117A	8-11'	4933.04	11/10/99	ND	ND	20.31	4.23	ND	ND	ND	ND	ND	2.91	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
114B	8-11'	4933.06	11/10/99	ND	ND	65.75	14.67	ND	ND	ND	ND	ND	3.44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

* Regulatory level shown is higher of PQL and Ground Water Quality Criteria as per NJAC 7;9-6

Exceedances of the NJDEP GWQC are highlighted and printed in **bold-faced** type.

D = Results are from a Dilution of the Sample

J = compound Identified Below Detection Limit

ND: Not Detected

NLE: No regulatory limit has been established for this parameter.

	Dent		Sample	Mag	Carbon	Chloro-		Ethyl-	Total	T .1		Chlorofor	4 4 5 6 5	4 0 0 00		DOF	TOF	Vinyl	trans-1,2-	cis-1,2-	2-	tert-Butyl	
Boring	Depth atory Level	Lab I.D.	Date	MeCl	DiSulfide NLE	benzene	Benzene	benzene 700	Xylenes 40	Toluene 1000	Acetone 700	m 6	1,4-DCB	1,2-DCB 600	1,3-DCB 600	PCE 1	TCE 1	Chloride 5	DCE 100	DCE 10	Butanone 1000	alcohol NLE	ether NLE
Field Dup	8-11'	(ug/L) 4933.16	11/10/99	ND	ND	4 61.73	12.70	ND	ND	ND	10.89	26.80	2.99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
115B	8-11'	4933.08	11/10/99	ND	ND	70.53	13.33	ND	ND	ND	ND	26.06	4.02	ND	1.20	ND	ND	ND	ND	ND	ND	ND	ND
116B	8-11'	4933.10	11/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117B	8-11'	4933.12	11/10/99	ND	ND	9.90	5.18	ND	ND	ND	ND	ND	1.99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
118B	8-11'	4933.14	11/10/99	ND	ND	3.84	1.57	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
114C	8-11'	4968.04	11/30/99	ND	ND	80.15	9.47	ND	3.48	2.29	ND	ND	11.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
115C	8-11'	4968.06	11/30/99	ND	ND	40.81	8.84	ND	ND	ND	ND	ND	2.21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116C	8-11'	4968.08	11/30/99	ND	ND	48.22	4.68	ND	ND	ND	8.40	ND	2.86	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117C	8-11'	4968.10	11/30/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
118C	8-11'	4968.12	11/30/99	ND	ND	13.57	4.03	ND	ND	ND	18.59	ND	3.45	ND	ND	ND	ND	ND	ND	ND	6.40	ND	ND
119C	8-11'	4968.14	11/30/99	ND	ND	8.58	2.59	ND	ND	ND	8.83	ND	2.21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
113D	8-11'	4971.04	12/1/99	ND	ND	19.33	2.53	ND	ND	ND	ND	ND	1.72	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
114D	8-11'	4971.06	12/1/99	ND	ND	15.18	4.02	ND	ND	1.21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
115D	8-11'	4971.08	12/1/99	ND	1.13	17.44	3.87	ND	ND	ND	ND	ND	1.16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116D	8-11'	4971.10	12/1/99	ND	ND	12.99	2.46	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117D	8-11'	4971.12	12/1/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
118D	8-11'	4972.04	12/2/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
113E	8-11'	4972.06	12/2/99	ND	ND	23.96	ND	ND	ND	ND	ND	ND	6.55	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
114E	8-11'	4972.08	12/2/99	ND	ND	13.98	ND	ND	ND	ND	ND	ND	3.58	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
115E	8-11'	4972.10	12/2/99	ND	1.60	6.69	2.13	ND	ND	ND	ND	ND	1.46	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116E	8-11'	4972.12	12/2/99	ND	ND	12.85	4.60	ND	ND	ND	ND	ND	2.62	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	8-11'	4972.14	12/2/99	ND	ND	9.47	ND	ND	ND	ND	ND	ND	3.25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117E	8-11'	4979.04	12/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
118E	8-11'	4979.06	12/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8.5-11.5'	4979.08	12/3/99	ND	ND	ND	ND	ND	ND	ND	3.61	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8.5-11.5	4979.10	12/3/99	ND	ND	ND	ND	ND	ND	ND	ND	1.34	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8.5-11.5'	4979.12	12/3/99	ND	ND	ND	ND	ND	ND	ND	ND	1.32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8.5-11.5' 8.5-11.5'	4979.14 4979.16	12/3/99 12/3/99	ND ND	ND ND	5.85 2.36	1.12 ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.01 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	8.5-11.5	4979.16	12/3/99	ND ND	ND ND	2.36 ND	ND	ND	ND	ND	3.38	ND	ND ND	ND	ND	ND ND		ND ND	ND	ND ND	ND	ND ND	ND
	8.5-13.5	4990.04	12/6/99	ND ND	ND	ND ND	ND	ND	ND	ND	3.38 ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND
	8.5-13.5	4990.06	12/6/99	ND ND	ND	14.00	1.88	ND	ND	ND	ND	ND	2.27	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND
	8.5-13.5	4990.08	12/6/99	ND ND	ND	28.94	3.83	ND	ND	ND	ND	ND	4.87	1.80	1.22	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND
	8.5-13.5	4990.10	12/0/99	ND	ND	20.94	3.58	ND	ND	ND	11.21	ND	5.12	1.80	1.13	ND	ND	ND	ND	ND	ND	ND	ND
	8.5-13.5	4995.04	12/7/99	ND	ND	22.30 ND	3.36 ND	ND	ND	ND	ND	ND	5.12 ND	1.40 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8.5-13.5	4995.08	12/7/99	ND	ND	7.75	ND	ND	ND	ND	ND	ND	1.07	ND	ND	ND	ND	ND	ND	ND	ND	53.08	ND
	8.5-13.5	4995.08	12/7/99	ND	ND	12.33	ND	ND	ND	ND	ND	ND	1.76	ND	ND	ND	ND	ND	ND	ND	ND	91.11	ND
	0.0-10.0	7000.10	12/1/33			12.55							1.70									31.11	

NOTES

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

* Regulatory level shown is higher of PQL and Ground Water Quality Criteria as per NJAC 7;9-6

Exceedances of the NJDEP GWQC are highlighted and printed in **bold-faced** type.

D = Results are from a Dilution of the Sample

J = compound Identified Below Detection Limit

ND: Not Detected

NLE: No regulatory limit has been established for this parameter.

Boring	Depth	Lab I.D.	Sample Date	MeCl	Carbon DiSulfide	Chloro- benzene	Benzene	Ethyl- benzene	Total Xylenes	Toluene	Acetone	Chlorofor m	1,4-DCB	1,2-DCB	1,3-DCB	PCE	TCE	Vinyl Chloride	trans-1,2- DCE	cis-1,2- DCE	2- Butanone	tert-Butyl alcohol	Methyl- tert-Butyl ether
Regula	atory Level	(ug/L)*		2	NLE	4	1	700	40	1000	700	6	75	600	600	1	1	5	100	10	1000	NLE	NLE
67E	8.5-13.5'	4995.12	12/7/99	ND	ND	5.92	ND	ND	1.99	ND	ND	ND	1.42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Dup	8.5-13.5'	4995.14	12/7/99	ND	ND	13.87	ND	ND	ND	ND	ND	ND	1.97	ND	ND	ND	ND	ND	ND	ND	ND	88.24	ND
113F	7-12'	5058.16	1/3/00	ND	3.35	99.56	4.47	ND	ND	ND	ND	ND	5.14	ND	2.26	ND	ND	ND	ND	ND	ND	ND	ND
114F	7-12'	5058.17	1/3/00	ND	20.61	16.74	3.11	ND	ND	ND	ND	ND	2.87	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
115F	7-12'	5058.18	1/3/00	ND	4.64	15.70	4.37	ND	ND	ND	5.06	ND	2.86	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116F	7-12'	5058.19	1/3/00	ND	ND	2.86	2.24	ND	ND	ND	7.61	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117F	7-12'	5058.20	1/3/00	ND	2.39	1.66	ND	ND	ND	ND	6.91	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
118F	7-12'	5058.21	1/3/00	ND	2.75	ND	ND	ND	ND	ND	8.21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
113G	7-12'	5064.12	1/4/00	ND	ND	ND	1.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
114G	7-12'	5064.13	1/4/00	ND	17.05	17.61	1.99	ND	ND	ND	ND	ND	6.34	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
115G	7-12'	5064.14	1/4/00	ND	ND	8.87	2.17	ND	ND	ND	ND	ND	5.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.31
116G	7-12'	5064.15	1/4/00	ND	1.69	23.75	8.22	ND	ND	ND	5.96	ND	11.01	ND	ND	ND	ND	ND	ND	ND	6.35	ND	ND
117G	7-12'	5064.16	1/4/00	ND	15.71	9.14	0.65	ND	ND	ND	ND	ND	5.22	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.04
118G	7-12'	5064.17	1/4/00	ND	10.77	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
113H	7-12'	5072.18	1/5/00	ND	3.70	6.14	2.35	ND	ND	ND	ND	ND	3.76	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
114H	7-12'	5072.19	1/5/00	ND	1.69	27.05	4.14	ND	1.94	ND	4.02	ND	4.65	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
115H	7-12'	5072.20	1/5/00	ND	ND	4.90	1.10	ND	ND	ND	ND	ND	6.49	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
116H	7-12'	5072.21	1/5/00	ND	1.66	34.42	1.99	ND	ND	ND	ND	ND	17.96	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
117H	7-12'	5072.22	1/5/00	ND	3.76	1.22	ND	ND	ND	ND	ND	ND	2.78	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
118H	7-12'	5072.23	1/5/00	ND	ND	ND	ND	ND	ND	ND	2.91	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1131	7-12'	5075.14	1/6/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.56	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1141	7-12'	5075.10	1/6/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1151	7-12'	5075.11	1/6/00	ND	1.86	ND	ND	ND	ND	ND	ND	ND	1.75	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1161	7-12'	5075.12	1/6/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1171	7-12'	5075.13	1/6/00	ND	ND	ND	ND	ND	ND	ND	19.22	ND	1.25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1181	7-12'	5075.09	1/6/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.56	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
64F	7-12'	5091.09	1/11/00	ND	ND	159.22 D	2.25	ND	ND	ND	ND	ND	8.34	1.90	2.23	ND	ND	ND	ND	ND	ND	ND	ND
65F	7-12'	5091.10	1/11/00	ND	ND	181.39 D	6.32	ND	ND	ND	ND	ND	9.32	2.05	4.76	ND	ND	ND	ND	ND	ND	ND	ND
66F	7-12'	5091.11	1/11/00	ND	1.15	69.69	3.45	ND	ND	ND	ND	ND	10.63	2.51	3.15	ND	ND	ND	ND	ND	ND	ND	ND
67F	7-12'	5091.12	1/11/00	ND	1.34	92.13	4.16	ND	ND	ND	2.23	ND	11.15	1.43	2.98	ND	ND	ND	ND	ND	ND	ND	ND
68F	7-12'	5091.13	1/11/00	ND	1.91	55.12	2.60	ND	ND	ND	ND	ND	14.12	0.98	4.87	ND	ND	ND	ND	ND	ND	ND	ND
69F	7-12'	5091.14	1/11/00	ND	1.39	59.31	2.85	ND	ND	ND	ND	ND	12.82	1.45	4.18	ND	ND	ND	ND	ND	ND	ND	ND
64G	7-12'	5091.15	1/11/00	ND	1.47	9.32	ND	ND	ND	ND	4.10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
65G	7-12'	5091.16	1/11/00	ND	1.44	6.72	ND	ND	ND	ND	ND	ND	3.36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
67G	7-12'	5091.17	1/11/00	ND	ND	6.93	ND	ND	ND	ND	ND	ND	3.36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
66G	7-12' 7-12'	5091.18 5096.09	1/11/00 1/12/00	ND ND	1.17 ND	7.45 3.43	ND 1.29	ND ND	ND ND	ND ND	ND ND	ND ND	3.85 7.92	ND 1.29	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND
68G	1-12	2090.09	1/12/00	ND		5.45	1.29	טא	טא	שא	ND		1.32	1.29	ND	ND	ND	ND	ND	UN	ND	ND	ND

NOTES

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

* Regulatory level shown is higher of PQL and Ground Water Quality Criteria as per NJAC 7;9-6

Exceedances of the NJDEP GWQC are highlighted and printed in **bold-faced** type.

D = Results are from a Dilution of the Sample

J = compound Identified Below Detection Limit

ND: Not Detected

NLE: No regulatory limit has been established for this parameter.

PQL: Practical Quantitation Limit

FORTMON2\D.O. 3_M-2 LandFill\Tables\Tables3and4FINALBenzenelnv.xls\Table4aq Fort Monmouth, BRAC 05 Facility Contract Number W912DY-09-D-0062, Task Order 0012

Boring	Depth	Lab I.D.	Sample Date	MeCl	Carbon DiSulfide	Chloro- benzene	Benzene	Ethyl- benzene	Total Xylenes	Toluene	Acetone	Chlorofor m	1,4-DCB	1,2-DCB	1,3-DCB	PCE	TCE	Vinyl Chloride	trans-1,2- DCE	cis-1,2- DCE	2- Butanone	tert-Butyl alcohol	Methyl- tert-Butyl ether
Regula	atory Level	(ug/L)*		2	NLE	4	1	700	40	1000	700	6	75	600	600	1	1	5	100	10	1000	NLE	NLE
69G	7-12'	5096.10	1/12/00	ND	1.73	26.77	ND	ND	ND	ND	ND	ND	3.23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
64H	7-12'	5096.11	1/12/00	ND	ND	3.87	ND	ND	3.27	ND	ND	ND	2.82	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
65H	7-12'	5096.12	1/12/00	ND	ND	3.24	ND	ND	ND	ND	ND	ND	1.79	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
66H	7-12'	5096.13	1/12/00	ND	ND	ND	ND	ND	ND	ND	9.18	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.49	ND	ND
67H	7-12'	5096.14	1/12/00	ND	18.11	2.64	ND	ND	ND	ND	1.95	ND	2.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
68H	7-12'	5102.06	1/13/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
69H	7-12'	5102.07	1/13/00	ND	1.30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4328.02	3/8/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4332.02	3/9/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4334.02	3/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4339.02	3/11/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4350.02	3/16/99	3.94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4355.02	3/17/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4358.02	3/18/99	4.03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4368.02	3/23/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4381.02	3/30/99	3.99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4396.02	4/6/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4407.02	4/9/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4414.02	4/13/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4417.02	4/14/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4422.02	4/16/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4433.02	4/21/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4442.02	4/26/99	ND	ND	ND	ND	ND	ND	ND	11.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4445.02	4/27/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4461.02	5/4/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4465.02	5/6/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4912.02	11/3/99	5.00	ND	ND	ND	ND	ND	ND	13.35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4915.02	11/4/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4931.02	11/8/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4933.02	11/10/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4968.02	11/30/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4971.02	12/1/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4972.02	12/2/99	3.16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4979.02	12/3/99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4990.02	12/6/99	ND	ND	ND	ND	ND	ND	ND	ND	1.18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	4995.02	12/7/99	ND	ND	ND	ND	ND	ND	ND	ND	1.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	5058.02	1/3/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOTES																							

NOTES

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

* Regulatory level shown is higher of PQL and Ground Water Quality Criteria as per NJAC 7;9-6

Exceedances of the NJDEP GWQC are highlighted and printed in **bold-faced** type.

D = Results are from a Dilution of the Sample

J = compound Identified Below Detection Limit

ND: Not Detected

NLE: No regulatory limit has been established for this parameter.

																							Methyl-
			Sample		Carbon	Chloro-		Ethyl-	Total			Chlorofor						Vinyl	trans-1,2-	cis-1,2-	2-	tert-Butyl	tert-Butyl
Boring	Depth	Lab I.D.	Date	MeCl	DiSulfide	benzene	Benzene	benzene	Xylenes	Toluene	Acetone	m	1,4-DCB	1,2-DCB	1,3-DCB	PCE	TCE	Chloride	DCE	DCE	Butanone	alcohol	ether
Regula	atory Level	l (ug/L)*		2	NLE	4	1	700	40	1000	700	6	75	600	600	1	1	5	100	10	1000	NLE	NLE
Field Blank	-	5064.02	1/4/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	5072.02	1/5/00	2.35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	5075.02	1/6/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	5091.02	1/11/00	ND	ND	ND	ND	ND	ND	ND	ND	4.92	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	5096.02	1/12/00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Field Blank	-	5102.02	1/13/00	ND	ND	ND	ND	ND	ND	ND	ND	3.19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

* Regulatory level shown is higher of PQL and Ground Water Quality Criteria as per NJAC 7;9-6

Exceedances of the NJDEP GWQC are highlighted and printed in **bold-faced** type.

D = Results are from a Dilution of the Sample

J = compound Identified Below Detection Limit

ND: Not Detected

NLE: No regulatory limit has been established for this parameter.

Lab Sample ID	NJDEP	4286.02	4286.03	4286.04	4286.05	4286.06	4286.07	4295.02	4295.03	4295.04	4295.05	4295.06	4295.07	4298.02	4298.03	4298.04	4298.05
Field Sample Location	Cleanup Criteria	B4 (6-12")	B4 (24")	B5 (6-12")	B5 (24")	B6 (6-12")	B6 (24")	B13 (6-12")	B13 (24")	B14 (6-12")	B14 (24")	B15 (6-12")	B15 (24")	B19 (6-12")	B19 (24")	B20 (6-12")	B20 (24")
Sample Date	(mg/kg)	2/19/1999	2/19/1999	2/19/1999	2/19/1999	2/19/1999	2/19/1999	2/23/1999	2/23/1999	2/23/1999	2/23/1999	2/23/1999	2/23/1999	2/24/1999	2/24/1999	2/24/1999	2/24/1999
Volatiles (mg/kg)			•			•	•					•	•				
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		0.87		ND		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg) Naphthalene	230	ND		ND		ND		ND		ND	r	ND		ND		ND	
2-Methylnaphthalene	230 NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND		ND	
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Phenanthrene	NLE	ND		ND		ND		ND		0.39 J		ND		ND		ND	
Anthracene	10,000	ND		ND		ND		ND		ND	l	ND		ND		ND	
Di-n-butylphthalate	5700	0.28JB		0.28JB		0.84JB		0.74JB		1.3B	l	0.43JB		0.88JB		0.68JB	
Fluoranthene Pyrene	2300 1700	ND ND		ND ND		0.17J 0.15 J		ND ND		0.46J 0.46 J	+	ND ND		ND ND		ND ND	
Pyrene Benzo[a]anthracene	0.9	ND		ND		0.15 J ND		ND		0.46 J 0.22J	+	ND		ND		ND	
Chrysene	9	ND		ND		0.17J		ND		0.22J	t	ND		ND		ND	
bis(2-Ethylhexyl)phthalate	49	0.23JB		0.12JB		0.14JB		0.11J		0.16 J	1	0.21J		0.14J		0.16J	
Benzo[b]fluoranthene	0.9	ND		ND		ND		ND		0.16J		ND		ND		ND	
Benzo[k]fluoranthene	0.9	ND		ND		ND		ND		0.18J		ND		ND		ND	
Benzo[a]pyrene	0.66	ND		ND		ND		ND		0.2J		ND		ND		ND	
Indeno[1,2,3-cd]pyrene	0.9	ND		ND		ND		ND		0.12 J		ND		ND		ND	
Dibenz[a,h]anthracene	0.66 NLE	ND ND		ND ND		ND ND		ND ND		ND 0.13J		ND ND		ND ND		ND ND	
Benzo[g,h,l]perylene Pesticides/PCBs (mg/kg)	INLE	ND		ND		ND		ND		0.133		ND		ND		ND	
gamma-BHC	0.52	ND		ND		ND		ND		ND	1	ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE	2	ND		0.016		0.019		ND		0.069		0.072		0.11		0.012	
Dieldrin	0.042	ND		ND		ND		ND		ND		0.03		ND		ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	ND		ND		0.021		ND		0.069		0.113		0.04		0.032	
4,4'-DDT	2	ND		0.04		ND		ND		0.079		ND		0.176		ND	
gamma-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
alpha-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND ND		ND		ND		ND	
Arochlor 1242 Arochlor 1248	0.49	ND ND		ND ND		ND ND		ND ND		ND		ND ND		ND ND		ND ND	
Arochlor 1254	0.49	1.0		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)						=											
Aluminum	NLE	8220		3930		14800		4850		11100		17400		4370		5320	
Antimony	14	1.1		1.4		0.941		0.653		0.919		2.04		0.48		0.527	
Arsenic	20	8.01		11.2		12.7		5.41		12.3		22.5		2.22		3.68	
Barium	700	29.6		12.9		46.3		9.51		68.3		198		7.44		12.6	
Beryllium	2	0.871		0.488		1.49		0.492		2.11		2.67		0.177		0.394	
Cadmium	39	0.245		0.525		0.506		0.158		0.674	+	4.17		0.384		0.248	
Calcium	NLE	521		275		1900		212		1030	l	1830		92.4		372 29.7	
Chromium Cobalt	NLE NLE	99.3 2.1		69.6 2.26		88.9 3.81		81.5 0.918		106 3.72	+	182 8.88		19.4 0.86		29.7	
Copper	600	41.3		29.6		16.4		7.61		35.6	t	391		66.6		69.8	
Iron	NLE	26000		16700		39900		18800		34000		74600		7890		12000	
Lead	400	31.7		28.9		21.1		8.5		48.7		187		4.46		27.7	
Magnesium	NLE	1930		986		3310		1170		2650		4490		437		742	
Manganese	NLE	51.5		2450		89.5		14		49.1		242		12.3		13.2	
Mercury	14	1.58		0.39		0.14		0.64		0.61		4.73		0.09		0.04	
Nickel	250	6.59		7.16		15.1		3.11		15.4		32.8		2.51		3.55	
Potassium	NLE	4450		2430		6950		3040		5140		8990		849		1530	
Selenium	63	1.03		1.66		0.727		0.65		1.31		2.53		ND		ND	
Silver	110	ND		ND		ND		ND		ND		ND		ND		ND	
Sodium	NLE	171		80.2		110		58.6		76.4	+	164		146		223	
Thallium	2	ND 78.0		ND 51.7		ND		ND		ND	l	ND 01.5		ND 17.0		ND	
Vanadium Zinc	370 1500	78.9 122		51.7 2720		60.3 242		69.7 42.8		58.5 187		91.5 605		17.9 9.61		23.7 41	
	1500	122	1	2/20		242	1	42.0		107	1	000	1	9.01		41	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

Lab Osmala IC	I		4000.07	4000 00	4000.00	1000 10	4000 44	1000 10	1002.10	4007.00	4007.00	4007.04	1007.05	4007.00	4007.07	4004.00	1001.00
Lab Sample ID	NJDEP Cleanup	4298.06	4298.07	4298.08	4298.09	4298.10	4298.11	4298.12	4298.13	4327.02	4327.03	4327.04	4327.05	4327.06	4327.07	4331.02	4331.03
Field Sample Location	Criteria	B21 (6-12")	B21 (24")	B25 (6-12")	B25 (24")	B26 (6-12")	B26 (24")	B27 (6-12")	B27 (24")	B31 (6-12")	B31 (24")	B32 (6-12")	B32 (24")	B33 (6-12")	B33 (24")	B34 (6-12")	B34 (24")
Sample Date	(mg/kg)	2/24/1999	2/24/1999	2/24/1999	2/24/1999	2/24/1999	2/24/1999	2/24/1999	2/24/1999	3/8/1999	3/8/1999	3/8/1999	3/8/1999	3/8/1999	3/8/1999	3/9/1999	3/9/1999
Volatiles (mg/kg)		2/24/1999	2/24/1999	2/24/1999	2/24/1999	2/24/1999	2/24/1999	2/24/1999	2/24/1999	3/6/1999	3/0/1999	3/0/1999	3/0/1999	3/0/1999	3/0/1999	2/9/1999	3/9/1999
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		0.68		ND		ND		ND		8.10		1.50		1.80		1.20
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg) Naphthalene	230	ND	1	ND		ND		ND		0.64 J		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		0.64 J		ND		ND		ND	
Acenaphthylene	NLE	0.42J		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		0.11 J		0.32JB		ND		ND		ND	
Fluorene Azobenzene	2300 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Phenanthrene	NLE	ND		ND		0.14 J		ND		0.32 J		0.11 J		0.24 J		ND	
Anthracene	10,000	0.3J	1	ND		ND		ND		ND		ND		ND		ND	
Di-n-butylphthalate	5700	1.3B		1.1JB		0.21JB		0.29JB		1.2JB		0.64JB		0.58JB		0.36JB	
Fluoranthene	2300	1.4		ND		0.24J		0.22J		0.6 J		0.17J		0.42 J		0.14J	
Pyrene	1700	1.9		ND		0.26 J		0.23 J		0.67 J		0.15 J		0.37 J		0.15 J	
Benzo[a]anthracene Chrysene	0.9	2.7 6.3		ND ND		0.14J 0.31J		0.15 J 0.34 J		0.34 J 0.68J		ND 0.17J		0.18 J 0.36 J		ND 0.16 J	
bis(2-Ethylhexyl)phthalate	49	0.18J		0.22J		0.2J		0.28 J		0.53JB		0.13JB		0.2JB		0.19JB	
Benzo[b]fluoranthene	0.9	4.5		ND		0.2J		0.22 J		0.34 J		ND		0.17 J		ND	
Benzo[k]fluoranthene	0.9	3.1		ND		0.17J		0.28 J		0.4 J		ND		0.18 J		ND	
Benzo[a]pyrene	0.66	2.9		ND ND		0.17J ND		0.19 J 0.12 J		0.39 J 0.21 J		ND ND		0.19 J ND		ND ND	
Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene	0.66	0.81J		ND		ND		0.12 J		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	1.5		ND		0.12J		0.12 J		0.2 J		ND		0.12 J		ND	
Pesticides/PCBs (mg/kg)																	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE Dieldrin	2 0.042	0.128 ND	-	0.063 ND		0.22 ND		0.05 ND		0.052		0.041 0.014		0.015 ND		0.028 ND	
Endrin	17	ND		ND		ND		ND		0.040 ND		ND		ND		ND	
4,4'-DDD	3	0.078		ND		0.086		0.021		0.042		0.092		0.022		0.031	
4,4'-DDT	2	0.199		0.092		0.61		0.064		0.044		0.037		ND		ND	
gamma-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
alpha-Chlordane Arochlor 1016	NLE 0.49	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Arochlor 1016 Arochlor 1242	0.49	ND	-	ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	1
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)			1	10000						05 (00		10100		(0000			
Aluminum Antimony	NLE 14	11400 0.527		16300 0.492		9000 0.555		7550 0.54		25400 2.48		10400 2.31		13000 ND		9360 ND	
Anumony Arsenic	20	10.527		19		10.2		8.33		37.7		2.31		16.3		ND 11	
Barium	700	54.3		28		45.6		40		226		40.6		73.1		109	
Beryllium	2	1.31		1.53		0.954		0.823		7.22		1.25		1.85		1.42	
Cadmium	39	0.181		ND		505		0.58		11.4		0.917		ND		ND	
Calcium	NLE NLE	2050		434 153		2680 98.7		1970		2750		1500 379		958		1320	
Chromium Cobalt	NLE NLE	145 1.55	+	153		98.7 3.33		76.8 1.56		165 35.9		379 2.46		228 0.948		156 1.2	
Copper	600	71.5		72.6		161		64.2		337		153		66.5		48.2	
Iron	NLE	35900		42600	_	29900		24500		118000		25900		51200		34500	
Lead	400	62.4		31.6		80.1		38.4		163		897		20.6		9.81	
Magnesium	NLE	4990		5230		4670		2820		3740		2480		7330		4770	
Manganese	NLE	57.4		51.1		117		65.4		775		23.5		24.7		28.5	
Mercury Nickel	14 250	0.15 6.69	+	0.05 7.38		0.24 9.68		0.13 5.39		1.87 100		1.07 14.1		0.04 4.79		0.04 5.19	
Potassium	250 NLE	10600		11200		7280		5980		7240		5350		17800		11200	
Selenium	63	0.977	1	1.29		0.863		0.982		3.72		0.704		1.4		1.09	
Silver	110	ND		ND		ND		ND		ND		1.15		ND		ND	
Sodium	NLE	140		155		236		126		233		208		128		141	
Thallium	2	ND		ND		ND		ND		ND		ND		ND		ND	
Vanadium	370	60.3	+	81.9		53.3		41.5		123		49.7		82.4		51.7	
Zinc	1500	140		50.4		102		66.9		683		106		72.6		65.4	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

Lab Sample ID	NJDEP	4331.04	4331.05	4331.06	4331.07	4331.08	4331.09	4335.02	4335.03	4335.04	4335.05	4335.06	4335.07	4335.08	4335.09	4335.10	4335.11
Field Sample Location	Cleanup Criteria	B35 (6-12")	B35 (24")	B36 (6-12")	B36 (24")	B37 (6-12")	B37 (24")	B38 (6-12")	B38 (24")	B39 (6-12")	B39 (24")	B40 (6-12")	B40 (24")	B41 (6-12")	B41 (24")	B42 (6-12")	B42 (24")
Sample Date	(mg/kg)	3/9/1999	3/9/1999	3/9/1999	3/9/1999	3/9/1999	3/9/1999	3/10/1999	3/10/1999	3/10/1999	3/10/1999	3/10/1999	3/10/1999	3/10/1999	3/10/1999	3/10/1999	3/10/1999
Volatiles (mg/kg)												•					
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		0.58		ND		ND		ND
Chlorobenzene	37		1.50		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg) Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	230 NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		0.21J	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND		0.16J	
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Phenanthrene	NLE	ND		0.3 J		ND		0.23 J		ND		0.18 J		0.15 J		2.4	
Anthracene	10,000	ND		ND		ND		ND		ND		ND		ND		0.7J	
Di-n-butylphthalate	5700	0.62JB		0.6JB		ND		1.6B		0.89JB		0.4JB		1.1JB		0.33JB	
Fluoranthene	2300	0.19 J		0.46 J		ND		0.2 J		ND		0.21 J		0.17 J		5.5	
Pyrene	1700	0.15 J		0.37 J		ND		0.27 J		ND		0.25 J		0.19 J		4.1	I
Benzo[a]anthracene	0.9	ND 0.17 J		0.2 J 0.35 J		ND ND		0.12 J 0.28 J		ND ND		0.11 J 0.24 J		ND 0.2 J		2.2 3.7	
Chrysene bis(2-Ethylhexyl)phthalate	9 49	0.17 J 0.18JB	1	0.35 J 0.29JB		ND ND	1	0.28 J 0.22JB		ND ND		0.24 J 0.14JB	1	0.2 J 0.14JB		3.7 0.15JB	
Benzo[b]fluoranthene	0.9	ND		0.233B		ND		ND		ND		ND		ND		2.1	
Benzo[k]fluoranthene	0.9	0.12 J		0.21 J		ND		0.12 J		ND		ND		ND		1.8	
Benzo[a]pyrene	0.66	ND		0.21 J		ND		0.12 J		ND		0.12 J		ND		2.2	
Indeno[1,2,3-cd]pyrene	0.9	ND		0.14 J		ND		ND		ND		ND		ND		1.3	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND		0.64J	1
Benzo[g,h,l]perylene	NLE	ND		0.14 J		ND		ND		ND		ND		ND		1.3	
Pesticides/PCBs (mg/kg)														, ,			
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE	2 0.042	0.02		0.027 ND		ND ND		0.048		0.015		0.083		0.04		0.029	
Dieldrin Endrin	17	ND ND		ND		ND		ND ND		ND ND		ND ND		ND ND		ND ND	I
4,4'-DDD	3	ND		0.062		ND		0.035		0.022		0.087		0.059		0.023	·
4,4'-DDT	2	ND		0.126		ND		0.187		ND		ND		0.059 ND		0.023 ND	
gamma-Chlordane	NLE	ND		0.029		ND		ND		ND		ND		ND		0.013	
alpha-Chlordane	NLE	ND		0.024		ND		ND		ND		ND		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND]
Metals (mg/kg)																	
Aluminum	NLE	7460		4470		5850		9820		18400		9770		8030		12200	I
Antimony Arsenic	14 20	ND 7.62		0.698		0.571 4.3		ND 11.4		ND 11.7		ND 10.3		ND 10.3		ND 13.5	I
Arsenic Barium	700	22.2		5.81		4.3		11.4 54.1		11.7		10.3		10.3 58.1		13.5 77.8	
Beryllium	2	0.649		0.366		0.504		54.1		2.71		1.39		1.11		1.81	
Cadmium	39	0.207		0.322		4.97		26.3		0.166		1.17		ND		ND	
Calcium	NLE	885		767		461		1050		1810		4230		862		1630	
Chromium	NLE	66.1		40.7		49.7		132		326		143		125		191	
Cobalt	NLE	1.45		1.13		1.09		1.31		0.756		1.73		1.45		1.72	
Copper	600	44		45.6		43.2		54.8		43.6		45.7		41.2		46.2	
Iron	NLE	18900		13400		14400		30800		60200		31900		31700		44000	
Lead	400	18.6		16.4		3.88		17.3		4.27		19.2		26.4		17.8	
Magnesium	NLE	1700		726		1520		3950		10600	-	4410		3860		6130	
Manganese	NLE	41.9		21.2		20.1		32.5		33.1		27.3		17.9		42.7	
Mercury	14	0.09		0.05		0.04		0.08		0.03		0.07		0.05		0.03	
Nickel	250	5.08		4.57		3.04		4.87		5.1		8.43		9.16		6.54	
Potassium	NLE	4040		1450		3400		9150		25800		10300		8540		14400	I
Selenium	63	ND		ND		ND		1.13		2.01		1.07		1.19		1.25	
Silver	110 NLE	ND 194		ND 96.8		ND 75.9		ND 124		ND 243		ND 100		ND 124		ND 176	
Sodium	NLE 2							124 ND				188 ND		124 ND		176	I
Thallium Vanadium	2 370	ND 51.2		ND 37.5		ND 28.7		ND 58.6		ND 116		ND 58.4		ND 49.8		ND 70.6	
Zinc	1500	44.6		37.5		28.7		58.6		116		58.4 61.5		49.8		95.6	
2110	1300	+++.0	1	JU.2		20.0	1	51.4		122		01.0	1	41.0		53.0	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

Lab Sample ID	NJDEP	4340.02	4340.03	4340.04	4340.05	4349.02	4349.03	4349.04	4349.05	4349.06	4349.07	4349.08	4349.09	4356.02	4356.03	4356.04	4356.05
Field Sample Location	Cleanup Criteria	B43 (6-12")	B43 (24")	B44 (6-12")	B44 (24")	B45 (6-12")	B45 (24")	B46 (6-12")	B46 (24")	B47 (6-12")	B47 (24")	B48 (6-12")	B48 (24")	B49 (6-12")	B49 (24")	B50 (6-12")	B50 (24")
Sample Date	(mg/kg)	3/11/1999	3/11/1999	3/11/1999	3/11/1999	3/16/1999	3/16/1999	3/16/1999	3/16/1999	3/16/1999	3/16/1999	3/16/1999	3/16/1999	3/17/1999	3/17/1999	3/17/1999	3/17/1999
Volatiles (mg/kg)						•						•					
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg)		1	1						-					· · · · · · · · · · · · · · · · · · ·			
Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE NLE	ND		ND ND		ND		ND ND		ND		ND ND		ND		ND ND	
Acenaphthylene		ND				ND				ND				ND			
Acenaphthene	3400 NLE	ND		0.16J		ND		ND									
Dibenzofuran Diethylphthalate	10,000	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Fluorene	2300	ND		0.13 J		ND		ND									
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Phenanthrene	NLE	ND		1.2		0.18 J		0.3 J		ND		0.14 J		ND		0.2 J	
Anthracene	10,000	ND		0.35 J		ND		ND	I								
Di-n-butylphthalate	5700	0.98JB	l	0.38JB		0.3JB		0.76JB		038JB		0.55JB		0.38JB		0.7JB	
Fluoranthene	2300	0.13 J		1.8		0.38 J		0.27 J		0.15 J		0.23 J		ND		0.37 J	
Pyrene	1700	0.15 J		1.5		0.36 J		0.39 J		0.18 J		0.25 J		0.17 J		0.42 J	
Benzo[a]anthracene	0.9	ND		0.84 J		0.19J		0.19 J		ND		0.14 J		0.18 J		0.26 J	
Chrysene	9	0.19 J		1.5		0.38 J		0.4 J		0.61 J		0.28 J		0.61 J		0.53 J	
bis(2-Ethylhexyl)phthalate	49	0.15JB		0.15JB		ND		0.32JB		ND		0.19JB		ND		0.19JB	I
Benzo[b]fluoranthene Benzo[k]fluoranthene	0.9	ND ND		0.7 J 0.81 J		0.2 J 0.24 J		0.12 J 0.16 J		0.13 J 0.14 J		0.14 J 0.16 J		0.32 J 0.29 J		0.29 J 0.21 J	I
Benzo[k]fluoranthene Benzo[a]pyrene	0.9	0.14 J		0.81 J		0.24 J 0.21 J		0.16 J 0.17 J		0.14 J 0.66 J		0.16 J 0.17 J		0.29 J 0.17 J		0.21 J	
Indeno[1,2,3-cd]pyrene	0.00	ND		0.48 J		0.21 J		ND		ND		ND		0.17 J		0.21 J	
Dibenz[a,h]anthracene	0.66	ND		0.22 J		ND		ND									
Benzo[g,h,l]perylene	NLE	ND		0.49 J		0.15 J		0.12 J		0.16 J		ND		0.13 J		0.32 J	
Pesticides/PCBs (mg/kg)																	
gamma-BHC	0.52	ND		ND		ND		ND		0.009		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE	2	0.078		0.041		0.095		0.098		0.05		0.032		0.158		0.109	
Dieldrin	0.042	0.091		ND		ND		0.015		0.019		ND		0.074		ND	<u> </u>
Endrin	17	ND		ND		ND		ND		0.019		ND		ND		ND	L
4,4'-DDD 4,4'-DDT	3	0.173 0.047		0.043 ND		ND ND		0.116 0.058		0.038 0.305		0.029 ND		0.195 0.105		0.133 0.116	
gamma-Chlordane	2 NLE	0.047 ND		ND		ND		0.058 ND		0.305 ND		0.021		0.105 ND		ND	I
alpha-Chlordane	NLE	ND		ND		ND		ND		ND		0.017		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	L
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		0.329	
Metals (mg/kg)									1								
Aluminum	NLE	12200		7990		11600		8680		11400		8380		12500		6730	I
Antimony Arsenic	14 20	1.34		ND 7.93		ND 9.04		ND 15		0.475		ND 13.9		ND 12.4		ND 7.92	I
Barium	700	34.6		53		9.04		54.9		47.7		69.6		27.1		54.3	I
Beryllium	2	1.73		1.12		2.03		1.15		1.52		1.32		1.47		1.16	
Cadmium	39	ND		0.30		0.756		ND		ND		0.431		ND		ND	
Calcium	NLE	1260		1280		1740		1040		1770		1570		1920		907	I
Chromium	NLE	160	l	108		196		126		139		118		163		89.3	I
Cobalt	NLE	1.14		1.12		1.65		1.27		1.53		1.26		2.29		1.01	
Copper	600	383		38.4		35.6		27.2		34.6		44		11.6		6.23	
Iron	NLE	36600		24200		44500		31400		40400		29900		37700		23000	
Lead	400	38.1		17.6		16.2		20		16.2		28.3		21.7		15.8	
Magnesium	NLE	5030		3300		6620		3840		4960		3870		4610		2530	
Manganese	NLE	14.7		26.5		27.3		21.4		29.6		40.3		41.4		19.9	I
Mercury	14	0.39		0.07		0.22		0.10		0.06		0.05		0.089		0.052	I
Nickel	250	6.95		5.24		11.1		5.35		7.59		5.7		8.21		5.1	I
Potassium	NLE	12200		7630		15200		8900		11700		9240		11100		6300	
Selenium Silver	63 110	ND ND		1.09 ND	1	1.7 ND	1	1.72 ND	1	0.818 ND	1	1.63 ND	1	2.02 ND		1.67 ND	
Silver	NLE	106		ND 195		207		292		ND 147		ND 178		ND 253		97.9	I
Thallium	NLE 2	ND		195 ND		207 ND		292 ND		147 ND		178 ND		253 ND		97.9 ND	I
Vanadium	370	74.4		47.4		85.9		51.3		76.4		43		45.2		30.9	
Zinc	1500	48.7		62.1		240		49.2		76.8		82.4		91.8		54.6	
				V2.1		2.10		10.2		10.0		02.1		01.0			

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

Lab Sample ID	NJDEP	4356.06	4356.07	4356.08	4356.09	4356.10	4356.11	4356.12	4356.13	4356.14	4356.15	4359.02	4359.03	4359.04	4359.05	4359.06	4359.07
Field Sample Location	Cleanup Criteria	B51 (6-12")	B51 (24")	B52 (6-12")	B52 (24")	B53 (6-12")	B53 (24")	B54 (6-12")	B54 (24")	B55 (6-12")	B55 (24")	B56 (6-12")	B56 (24")	B57 (6-12")	B57 (24")	B58 (6-12")	B58 (24")
Sample Date	(mg/kg)	3/17/1999	3/17/1999	3/17/1999	3/17/1999	3/17/1999	3/17/1999	3/17/1999	3/17/1999	3/17/1999	3/17/1999	3/18/1999	3/18/1999	3/18/1999	3/18/1999	3/18/1999	3/18/1999
Volatiles (mg/kg)																	
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg)																	
Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	L
Fluorene	2300 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	ł
Azobenzene Phenanthrene	NLE	ND		ND		0.13 J		ND		ND		ND		ND		0.25 J	
Anthracene	10,000	ND		ND		0.13 J ND		ND		ND	+	ND		ND		0.25 J ND	
Di-n-butylphthalate	5700	0.16JB		0.83 JB		ND		0.64 JB		0.43JB	-	0.13JB		0.4JB		0.15JB	
Fluoranthene	2300	0.16JB		ND		0.20 J		0.04 JB ND		0.433B		0.23 J		ND		0.15JB 0.46 J	
Pyrene	1700	0.19 J		ND		0.20 J		ND		0.63 J	1	0.23 J		ND		0.4 J	
Benzo[a]anthracene	0.9	ND		ND		ND		ND		0.88 J	1	0.13 J		ND		0.22 J	I
Chrysene	9	0.18 J		ND		0.20 J		ND		1.5		0.22 J		ND		0.42 J	
bis(2-Ethylhexyl)phthalate	49	0.15JB	İ	ND		ND		0.15 JB		0.14 J		0.19 J		0.15 J		0.13 J	
Benzo[b]fluoranthene	0.9	ND		ND		ND		ND		1.1 J		ND		ND		0.25 J	
Benzo[k]fluoranthene	0.9	ND		ND		ND		ND		0.97 J		ND		ND		0.2 J	
Benzo[a]pyrene	0.66	ND		ND		ND		ND		1.0 J		0.12 J		ND		0.24 J	
Indeno[1,2,3-cd]pyrene	0.9	ND		ND		ND		ND		0.78 J		ND		ND		0.14 J	L
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		0.25 J		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	ND		ND		ND		ND		0.76 J		ND		ND		0.15 J	L
Pesticides/PCBs (mg/kg)	0.50	ND	1	ND		ND		ND		ND	r	ND		ND		ND	
gamma-BHC	0.52 NLE	ND ND		ND		ND ND		ND ND		ND ND		ND		ND		ND	I
Heptachlor Epoxide 4,4'-DDE	2	0.047		0.031		0.048		0.014		0.028		0.018		0.016		0.033	
Dieldrin	0.042	0.047 ND		ND		0.048 ND		ND		0.028 ND		ND		ND		0.033 ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	0.106		0.024		0.037		ND		0.015		0.017		0.023		0.03	
4,4'-DDT	2	0.083		0.052		ND		ND		ND		ND		ND		ND	
gamma-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
alpha-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	l
Metals (mg/kg)		1													-		
Aluminum	NLE	7310		8120		5860		5840		6320		4140		4690		4590	L
Antimony	14	ND		ND		ND		ND		ND	+	0.677		ND		ND	⊢∥
Arsenic	20 700	10.4		8.57 48.6		11.1		6.67		6.67	+	9.78		6.36		5.85	┟─────┨
Barium	2	67.3 1.19		48.6		63.6 1.00		36.3 0.637		26.2 0.669		46.5 0.535		34.5 0.741		19.1 0.569	⊢─────┦
Beryllium Cadmium	39	1.19 ND		0.966 ND		1.00 ND		0.637		0.669 ND	+	0.535		0.741 ND		0.569 ND	├────┦
Calcium	NLE	1130		611		2910		5050		767	t	4310		629		459	⊢
Chromium	NLE	101		104		72.7		63.7		56.9		49.5		64.6		58.4	I
Cobalt	NLE	1.17		0.964		2.49		1.4		1.02		1.49		0.83		0.804	
Copper	600	7.88	l	4.99		11.7		20.5		2.17		33.4		6.75		6.88	
Iron	NLE	24900	l	24000		21300		19300		19700		15900		17700		13800	
Lead	400	18.1		16.2		18.1		36.7		5.27		41.9		8.49		13	
Magnesium	NLE	2480		2720		1900		2350		1790		1770		1860		1480	
Manganese	NLE	20.1		16.4		28.2		123		39.6		83.4		13.3		8.5	
Mercury	14	0.026		0.027		0.027		0.216		ND		0.401		0.078		0.091	
Nickel	250	5.72		4.33		9.07		6.42		3.81		5.9		3.69		3.44	
Potassium	NLE	5980		6180		4900		4890		4270	-	3300		4400		3510	
Selenium	63	2.12		1.56		1.94		1.28		ND		1.11		1.41		ND	
Silver	110	ND		ND		ND		ND		ND		ND		ND		ND	
Sodium	NLE	103		91.8		103		120		45.1		165		94.4		118	
Thallium	2	ND		ND		ND		ND		ND		ND		ND		ND	
Vanadium	370	38.1		41.8		26.2		30.7		27.6		25.9		25.9		26.5	⊢
Zinc	1500	50.4		42.2		49.6		96.8		20.8		126		34.7		27.9	i

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

(·												I I			
Lab Sample ID	NJDEP	4359.08	4359.09	4367.02	4367.03	4367.04	4367.05	4367.06	4367.07	4367.08	4367.09	4367.10	4367.11	4367.12	4367.13	4367.14	4367.15
Field Sample Location	Cleanup	B59 (6-12")	B59 (24")	B59A (6-12")	B59A(24")	B60 (6-12")	B60 (24")	B61 (6-12")	B61 (24")	B62 (6-12")	B62 (24")	B63 (6-12")	B63 (24")	B64 (6-12")	B64 (24")	B65 (6-12")	B65 (24")
	Criteria (mg/kg)																· /
Sample Date	(119/19)	3/18/1999	3/18/1999	3/23/1999	3/23/1999	3/23/1999	3/23/1999	3/23/1999	3/23/1999	3/23/1999	3/23/1999	3/23/1999	3/23/1999	3/23/1999	3/23/1999	3/23/1999	3/23/1999
Volatiles (mg/kg)								1								1	
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride Toluene	49 1000		ND ND		ND ND		1.00 ND		0.92 ND		1.30 ND		ND ND		1.90 ND		1.30 ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg)	0.	1	110		110	1	110		110		110	1	110		110		
Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND ND		ND		ND		ND		ND		ND	
Fluorene Azobenzene	2300 NLE	ND ND		ND ND		ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Phenanthrene	NLE	0.15 J		0.14 J		ND		0.89 J		0.15 J		0.17 J		ND		0.82 J	
Anthracene	10.000	ND		ND		ND		0.23 J		ND		ND		ND		0.24 J	
Di-n-butylphthalate	5700	ND		0.16JB		0.18JB		0.12JB		0.13JB		0.77JB		1.5JB		0.13JB	
Fluoranthene	2300	0.15 J		0.14 J		0.18 J		1.5		0.28 J		0.25 J		ND		1.3	
Pyrene	1700	0.23 J		0.22 J		0.21 J		1.3		0.27 J		0.26 J		ND		1.3	
Benzo[a]anthracene	0.9	0.12 J		ND		0.13 J		0.67 J		0.18 J		0.16 J		ND		0.75 J	
Chrysene bis(2-Ethylhexyl)phthalate	9 49	0.2 J ND		0.18 J 0.11 J		0.18 J ND		0.9 J ND		0.27 J ND		0.28 J 0.18 J		ND 0.2 J		1.2 0.22J	
Benzo[b]fluoranthene	0.9	ND		ND		ND		0.41 J		0.12 J		0.18 J		ND		0.58 J	I
Benzo[k]fluoranthene	0.9	ND		ND		ND		0.44 J		0.12 J		0.14 J		ND		0.53 J	
Benzo[a]pyrene	0.66	ND		ND		ND		0.51 J		0.15 J		0.14 J		ND		0.6 J	
Indeno[1,2,3-cd]pyrene	0.9	ND		ND		ND		0.31 J		ND		ND		ND		0.23 J	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	ND		ND		ND		0.36 J		ND		ND		ND		0.24 J	
Pesticides/PCBs (mg/kg)	0.50	ND		ND		ND		ND		ND		ND		ND		ND	
gamma-BHC Heptachlor Epoxide	0.52 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
4,4'-DDE	2	0.028		0.026		ND		0.017		0.024		0.025		0.015		0.019	
Dieldrin	0.042	ND		ND		ND		ND		ND		ND		ND		0.013	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	0.046		0.047		0.044		0.02		0.047		0.03		ND		0.131	
4,4'-DDT	2	0.041		0.065		ND		0.026		ND		ND		ND		ND	
gamma-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
alpha-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		ND	·
Arochlor 1242 Arochlor 1248	0.49	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Arochlor 1248 Arochlor 1254	0.49	ND		ND		0.651		ND		ND		ND		ND		ND	1
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)																	
Aluminum	NLE	8650		7740		6100		10400		2990		5320		32000		4540	
Antimony	14	ND		ND		ND		0.903		0.529		0.516		ND		0.538	
Arsenic	20	11.8		12.3		8.53		11.4		3.34		3.72		26.8		2.58	
Barium	700	57.3		60		38.1		39.8		19.2		13.3		220		159	I
Beryllium Cadmium	2 39	1.41 0.484		1.26 ND		0.92 ND		1.66 0.225	1	0.255 0.655		0.304 0.27	1	10.6 1.36		0.662 0.578	
Calcium	39 NLE	1220		990		ND 759		1390		299		483		325		2170	
Chromium	NLE	133		118		89.4		126		14.3		22.2		271		11.9	
Cobalt	NLE	1.37		1.19		0.93		1.45		0.727		1.11		13.1		7.29	
Copper	600	11.5		10.2		7.05		12.8		10.6		5.18		134		48	
Iron	NLE	30000		28400		23800		31200		4420		7850		89600		7670	
Lead	400	13.8		17.1		13.8		18.2		22.7		7.45		119		6.85	I
Magnesium	NLE	3710		3220		2450		3880		285		506		4960		544	
Manganese	NLE	19.1		19.2		16.9		31.5		9.40		15.5		42.5		29.4	
Mercury Nickel	14 250	0.071 5.9		0.079 5.18		0.06 3.97		0.133 6.85	1	0.074 3.47		0.08	1	16.7 70.7		0.173 19.6	
Potassium	250 NLE	5.9		5.18		5710		8710		3.47		5.93 903		8570		274	I
Selenium	63	1.8		1.66		1.29		0.938		479 ND		903 ND		2.01		1.06	I
Silver	110	ND		ND		ND		ND		ND		ND		ND		ND	I
Sodium	NLE	219		225		89.7		160		84		113		291		358	
Thallium	2	ND		ND		ND		ND		ND		ND		ND		ND	
Vanadium	370	44.7		43.8		32		46.8		11		16.3		189		17.3	
Zinc	1500	62.8		61.4		55.6		85		30.2		25.6		283		61.8	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

Lab Sample ID	NJDEP	4380.02	4380.03	4380.04	4380.05	4380.06	4380.07	4380.08	4380.09	4380.10	4380.11	4395.02	4395.03	4395.04	4395.05	4395.06	4395.07
Field Sample Location	Cleanup Criteria	B66 (6-12")	B66 (24")	B67 (6-12")	B67 (24")	B68 (6-12")	B68 (24")	B69 (6-12")	B69 (24")	B70 (6-12")	B70 (24")	B71 (6-12")	B71 (24")	B72 (6-12")	B72 (24")	B73 (6-12")	B73 (24")
Sample Date	(mg/kg)	3/30/1999	3/30/1999	3/30/1999	3/30/1999	3/30/1999	3/30/1999	3/30/1999	3/30/1999	3/30/1999	3/30/1999	4/6/1999	4/6/1999	4/6/1999	4/6/1999	4/6/1999	4/6/1999
Volatiles (mg/kg)					•	•					•						
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		0.420 J		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		0.69		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg) Naphthalene	230	ND	1	ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	230 NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND		ND	
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Phenanthrene	NLE	ND		ND		ND		0.17 J		ND		ND		ND		ND	
Anthracene	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Di-n-butylphthalate	5700	0.47JB		0.21JB		0.68JB		0.13JB		1.5B		2.6 B		0.12JB		0.38JB	
Fluoranthene	2300 1700	ND 0.13 J		0.14 J 0.13 J		ND ND		0.16 J 0.19 J		0.22 J 0.23 J		ND 0.14 J		ND ND		0.22 J 0.23J	
Pyrene Benzo[a]anthracene	0.9	0.13 J ND		0.13 J ND		ND ND	1	0.19 J ND	1	0.23 J ND		0.14 J ND		ND ND		0.23J 0.12 J	<u> </u>
Chrysene	0.9	0.16 J		0.14 J		ND		0.19 J		0.34 J		0.15 J		ND ND		0.12 J 0.25 J	⊢I
bis(2-Ethylhexyl)phthalate	49	ND		0.14JB		0.16JB		ND		0.33 JB		ND		ND		0.18 J	
Benzo[b]fluoranthene	0.9	ND		ND		ND		ND		0.19 J		ND		ND		0.13 J	I
Benzo[k]fluoranthene	0.9	ND		ND		ND		ND		0.15 J		ND		ND		0.12 J	
Benzo[a]pyrene	0.66	ND		ND		ND		ND		ND		ND		ND		0.13 J	
Indeno[1,2,3-cd]pyrene	0.9	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Pesticides/PCBs (mg/kg)	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
gamma-BHC	0.52 NLE	ND ND		ND		ND ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide 4,4'-DDE	2	0.041		0.016		0.012		0.023		0.056		0.028		0.072		0.049	
Dieldrin	0.042	ND		ND		ND		ND		ND		ND		0.072		0.049 ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	0.025		ND		ND		0.062		0.14		0.059		0.295		0.081	
4,4'-DDT	2	0.051		ND		ND		0.044		ND		ND		ND		0.032	
gamma-Chlordane	NLE	ND		ND		0.022		ND		ND		ND		ND		ND	
alpha-Chlordane	NLE	ND		ND		0.021		ND		ND		ND		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND ND		ND		ND		ND		ND	n
Arochlor 1254 Arochlor 1260	0.49	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND		ND ND	
Metals (mg/kg)	0.49	UN	I	ND	1	טא		ND		NU	1	ND		ND		טא	L
Aluminum	NLE	8390		8220		8220		10300		15300		8120		2400		7890	
Antimony	14	0.788		0.49		ND		0.432		0.913		ND		2400 ND		0.856	
Arsenic	20	2.16		9.76		8.46		9.48		9.34		8.68		2.15		81.3	
Barium	700	17.1		48.6		56.2		53.2		97.1		49.9		22.8		76.6	
Beryllium	2	0.246		1.05		1.3		1.08		2.73		1.03		0.409		1.06	
Cadmium	39	0.157		ND		ND	-	ND	-	ND	-	ND	-	1.7		ND	
Calcium	NLE	267		1250		864		819		660		1050		482		1340	
Chromium	NLE	21.5		99.4		134		102		81.8		104		5.69		115	
Cobalt	NLE	0.988		1.21		1.39		2.00		8.05		1.12		3.32		0.861	
Copper	600	13.4		10.3		8.25		16.8		34		3.97		18.9		3.19	
Iron	NLE 400	6840 6.86		25600 25		28500		26000		29400 46.8		25200 17.9		3110 3.73		36400 15.1	
Lead	400 NLE	6.86 507		25 2720		19.1 3480	1	24.4 2830	1	46.8 2640		3110		3.73		15.1 3730	<u> </u>
Magnesium	NLE	19		18.8		21.9		2830		42.5		18.7		15.5		18	├
Manganese Mercury	14	0.078		0.117		0.062		0.13		42.5 0.161		0.066		0.092		0.051	<u> </u>
Nickel				5.9		6.21		7.69		31.6		4.33		12.5		3.86	
Potassium		4 4 4						5960		5820		8650		246		11700	
	250	4.44				7660											
Selenium		4.44 1080 ND		6160 1.57		7660		1.3		1.78		1.08		240 ND		1.45	
Selenium Silver	250 NLE	1080		6160													
Silver	250 NLE 63	1080 ND		6160 1.57		1.56		1.3		1.78		1.08		ND		1.45	
	250 NLE 63 110 NLE 2	1080 ND ND 133 ND		6160 1.57 ND 148 ND		1.56 ND 117 ND		1.3 ND 119 ND		1.78 ND 240 ND		1.08 ND 290 ND		ND ND 142 ND		1.45 ND 301 ND	
Silver Sodium	250 NLE 63 110 NLE	1080 ND ND 133		6160 1.57 ND 148		1.56 ND 117		1.3 ND 119		1.78 ND 240		1.08 ND 290		ND ND 142		1.45 ND 301	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

	1							T				T					
Lab Sample ID	NJDEP	4406.02	4406.03	4406.04	4406.05	4406.06	4406.07	4415.02	4415.03	4415.04	4415.05	4415.06	4415.07	4415.08	4415.09	4418.02	4418.03
Field Oemale Leasting	Cleanup	D74 (0.401)	D74 (041)	D75 (0 400)	D75 (0.48)	D70 (0 40%)	D70 (041)	D77 (0.401)	D77 (041)	D70 (0.400)	D70 (041)	D70 (0.40%)	D70 (0.48)	D00 (0 401)	D00 (0411)	D04 (0.400)	
Field Sample Location	Criteria	B74 (6-12")	B74 (24")	B75 (6-12")	B75 (24")	B76 (6-12")	B76 (24")	B77 (6-12")	B77 (24")	B78 (6-12")	B78 (24")	B79 (6-12")	B79 (24")	B80 (6-12")	B80 (24")	B81 (6-12")	B81 (24")
Sample Date	(mg/kg)	4/9/1999	4/9/1999	4/9/1999	4/9/1999	4/9/1999	4/9/1999	4/13/1999	4/13/1999	4/13/1999	4/13/1999	4/13/1999	4/13/1999	4/13/1999	4/13/1999	4/14/1999	4/14/1999
Volatiles (mg/kg)																	
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		1.10		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND ND
Chlorobenzene Semi-Volatiles (mg/kg)	37		ND		ND		ND		ND		ND		ND		ND		ND
Naphthalene	230	ND	1	ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	(
Acenaphthylene	NLE	ND		0.3 J		ND		ND		ND		ND		ND		ND	1
Acenaphthene	3400	ND		ND		ND		0.27 J		ND		ND		ND		ND	i
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND		ND	i .
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	1
Phenanthrene	NLE	ND		ND		0.3 J		2.0		0.27 J		ND		ND		ND	
Anthracene	10,000	ND		ND		ND		0.55 J		0.15 J		ND		ND		ND	I
Di-n-butylphthalate	5700	0.3JB		0.6JB		0.79JB		2.3B		0.62JB		0.18JB		0.23JB	-	2.B	i
Fluoranthene	2300 1700	ND ND		0.21 J 0.34 J	1	0.4 J 0.32 J		3.4 2.7		0.64 J 0.76 J		0.15 J 0.18 J		ND ND		ND ND	
Pyrene Benzofalanthracene	0.9	ND		0.34 J 0.19 J		0.32 J 0.17 J		1.4		0.76 J 0.51 J		0.18 J ND		ND		ND	()
Benzo[a]anthracene Chrysene	0.9	ND		0.19 J 0.45 J		0.17 J 0.3 J		2.4		0.51 J 0.84 J		0.18 J		ND		ND	()
bis(2-Ethylhexyl)phthalate	49	ND		0.45 5 ND		ND		ND		0.18 J		ND		ND		ND	i
Benzo[b]fluoranthene	0.9	ND		0.19 J		0.18 J		1.1 J		0.68 J		ND		ND		ND	i
Benzo[k]fluoranthene	0.9	ND		0.19 J		0.14 J		1.2 J		0.74 J		ND		ND		ND	
Benzo[a]pyrene	0.66	ND		0.24 J		0.17 J		1.4		0.73 J		ND		ND		ND	
Indeno[1,2,3-cd]pyrene	0.9	ND		0.2 J		ND		0.78 J		0.34 J		ND		ND		ND	1
Dibenz[a,h]anthracene	0.66	ND		ND		ND		0.31 J		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	ND		0.25 J		ND		0.83 J		0.38 J		ND		ND		ND	L
Pesticides/PCBs (mg/kg)	0.50							110		110		10				10	
gamma-BHC	0.52 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	1
Heptachlor Epoxide 4,4'-DDE	NLE 2	0.038		0.013		0.03		0.039		0.028		0.028		0.047		0.087	
4,4-DDE Dieldrin	0.042	0.038 ND		0.013 ND		0.03 ND		0.039 ND		0.028 ND		0.028 ND		0.047 ND		0.087 ND	(
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	í
4,4'-DDD	3	0.168		ND		0.021		0.056		0.024		0.023		0.043		0.065	í
4,4'-DDT	2	0.057		ND		0.073		0.028		ND		ND		0.035		ND	ĺ
gamma-Chlordane	NLE	0.019		ND		ND		ND		0.018		ND		ND		ND	
alpha-Chlordane	NLE	0.022		ND		0.013		ND		0.017		ND		ND		ND	i l
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		ND	1
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	1
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)		0570		0.070	1	40400		0740		0070		0570		75.40	1	10000	
Aluminum	NLE 14	9570 ND		3670 2.31		12400 ND		9740 ND		6670 0.753		6570 ND		7540 ND		13900 0.782	1
Antimony Arsenic	20	9.55		2.31		ND 9.54		ND 11.9		6.13		6.87		ND 15.5		0.782	()
Barium	700	23.8		13.1		40.5		60.4		45.2		37.9		34.4		80.9	
Beryllium	2	0.896		0.332		0.928		1.14		0.499		0.574		0.68		1.59	i
Cadmium	39	ND		ND		ND		2.89		0.742		0.408		ND		ND	i
Calcium	NLE	1810	l	493		1350		4930		10100		6570		1950		4200	
Chromium	NLE	101		32.5		77.8		95.1		55.6		53.1		89.6		189	
Cobalt	NLE	1.53		3.58		3.38		2.59		2.11		2.11		1.01		1.42	
Copper	600	16.1		55.4		14.1	-	27	-	26.7	-	99		11.7		9.12	1
Iron	NLE	25700		45400		32200		26800		18000		17600		24100		45000	. <u></u>
Lead	400	32.3		24.2		21.2		54		87.2		57.7		18.5		38.6	H
Magnesium	NLE	2760		443		2190		3780		2390		2580		2110		6090	ł
Manganese	NLE	87.8		184		98		685		311		158		31.2		34.1	h
Mercury	14	0.103		0.058		0.083		0.623		0.31		0.376		0.083		0.117	1
Nickel	250	6.18		6.72		10		11.9		8.11		6.97		4.9		7.61	1
Potassium	NLE	6440		863 ND	1	4600 ND		7500		3540		4440		5070	1	13100	
Selenium	63 110	0.759 ND		ND ND	1	ND ND		1.23 ND		ND ND		ND ND		0.93 ND	1	1.97 ND	
Silver Sodium	NLE	188		ND 166		ND 494		ND 151		ND 115		ND 158		252		203	
Thallium	2	188 ND		ND		494 ND		151 ND		ND		158 ND		252 ND		203 ND	()
Vanadium	370	61.8		31.7		74.6		42.7		30.5		30		78.9		70.1	i
Zinc	1500	63.7		43.6		80.5		422		145		126		46.1		74.4	
		00.7	1	10.0		00.0										1 1 1 1 1	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

Lab Gamala ID	·		4440.05	4440.00	4440.07	4440.00	4440.00	1110.10	4440.44	4440.40	1110.10	4400.00	4400.00	4400.04	4400.05	4400.00	4400.07
Lab Sample ID	NJDEP Cleanup	4418.04	4418.05	4418.06	4418.07	4418.08	4418.09	4418.10	4418.11	4418.12	4418.13	4423.02	4423.03	4423.04	4423.05	4423.06	4423.07
Field Sample Location	Criteria	B82 (6-12")	B82 (24")	B83 (6-12")	B83 (24")	B84 (6-12")	B84 (24")	B85 (6-12")	B85 (24")	B86 (6-12")	B86 (24")	B87 (6-12")	B87 (24")	B88 (6-12")	B88 (24")	B89 (6-12")	B89 (24")
Sample Date	(mg/kg)	4/14/1999	4/14/1999	4/14/1999	4/14/1999	4/14/1999	4/14/1999	4/14/1999	4/14/1999	4/14/1999	4/14/1999	4/16/1999	4/16/1999	4/16/1999	4/16/1999	4/16/1999	4/16/1999
Volatiles (mg/kg)									•								
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride Toluene	49 1000		ND ND		ND ND		ND 0.36		ND ND		ND ND		1.40 ND		1.60 ND		1.40 ND
Chlorobenzene	37		ND		ND		0.36 ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg)	0.	1	115	1	110	1			110	1	115		110		110		110
Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE 3400	1.5 ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Acenaphthene Dibenzofuran	3400 NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND		ND	
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Phenanthrene	NLE	0.22 J		0.16 J		0.1 J		0.39 J		ND		ND		ND		ND	
Anthracene Di-n-butylphthalate	10,000 5700	0.78 J 0.26 JB		ND 0.17JB		ND 1.2JB	l	ND 22 BD		ND 0.84JB		ND 0.22JB		ND 1.1JB		ND 0.2JB	
Fluoranthene	2300	5.4		0.17JB 0.27 J		0.23 J		0.25 J		ND		ND		0.18 J		0.25B	
Pyrene	1700	12 D		0.3 J		0.25 J		0.38 J		ND		0.13 J		0.19 J		0.2 J	
Benzo[a]anthracene	0.9	9.5		0.16 J		0.14 J		0.14 J		ND		ND		ND	-	ND	
Chrysene	9 49	14 D		0.26 J		0.24 J		0.31 J ND		ND ND		0.12 J ND		0.23 J ND		ND	
bis(2-Ethylhexyl)phthalate Benzo[b]fluoranthene	49	ND 13 D		ND 0.15 J		0.18 J 0.15 J		ND		ND		ND		0.13 J		ND ND	
Benzo[k]fluoranthene	0.9	11 D		0.15 J		0.13 J		ND		ND		ND		ND		ND	
Benzo[a]pyrene	0.66	10 D		0.15 J		ND		ND		ND		ND		ND		ND	
Indeno[1,2,3-cd]pyrene	0.9	5.7 D		ND		ND		ND		ND		ND		ND		ND	
Dibenz[a,h]anthracene Benzo[g,h,l]perylene	0.66 NLE	3.5 D 2.7		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Pesticides/PCBs (mg/kg)	INCL	2.1	I	ND	I	ND		ND		ND		ND		ND		ND	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE	2	0.088		0.038		0.055		0.068		0.098		0.044		0.089		ND	
Dieldrin	0.042	ND		ND		ND		ND		ND		ND		0.018		ND	
Endrin 4,4'-DDD	17 3	ND 0.142		ND 0.018		ND 0.017		ND 0.098		ND 0.14		ND 0.149		ND 0.13		ND 0.014	
4,4'-DDT	2	0.142		0.027		0.085		ND		0.14 ND		ND		0.171		ND	
gamma-Chlordane	NLE	0.016		ND		0.028		ND		ND		ND		ND		0.014	
alpha-Chlordane	NLE	0.018		ND		0.02		ND		ND		ND		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1242 Arochlor 1248	0.49 0.49	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)									•			•	•				
Aluminum	NLE	5470		7290		5280		6500		6390		9620		8960		12700	
Antimony Arsenic	14 20	0.669 6.31		1.1 14		1.46 7.15		0.629		0.775		1.00		1.02 8.91		0.863 9.98	
Arsenic Barium	700	27.2		47.5		48.8		88.7		74.1		47.3		43.8		9.98	
Beryllium	2	0.647		0.915		0.571		1.14		1.6		0.944		1.23		1.12	
Cadmium	39	0.112		0.22		0.771		0.174		2.94		ND		0.286		0.353	
Calcium	NLE	621		2240		4870		8710		5160		1430		1290		3940	
Chromium	NLE	56.3		102		52.8		92.4		75.5		66.9		105		104	
Cobalt Copper	NLE 600	1.1 6.57		1.34 17.6		3.5 38.6		1.73		2.53 7.53		1.31		1.65 9.7		1.83 20.2	
Iron	NLE	18200		25200		17600		25500		18700		20900		26000		30800	
Lead	400	11.3		42.8		89.9		33.4		21.4		38.9		19.6		36.1	
Magnesium	NLE	1650		2770		1870		2900		2200		1860		3200	-	3590	
Manganese	NLE	19.3		102		198		28.7		22.5		28		31.3		62.4	
Mercury Nickel	14 250	0.119 4.39		0.566 5.65		0.254 12.9		0.097 6.44		0.121 15.7		0.136 7.53		0.034		0.034 8.31	
Potassium	250 NLE	4.39		5.65		2760		6990		5020		7.53		6130		7710	
Selenium	63	0.787		1.44		1.37		2.5		2.49		1.77		1.62		0.837	
Silver	110	ND		ND		ND		ND		ND		ND		ND		ND	
Sodium	NLE	93.4		116		185	-	380		648		544		141		770	
Thallium	2	ND		ND		ND	l	ND		ND		ND		ND		ND	
Vanadium	370 1500	26.2 59.6		53.7 82.1		28.3 215		22.1 81.8		20.6 106		27.1 56.7		41 91		52.7 99.9	
Zinc	1000	0.80		02.1		210		01.0		100		00.7		91		99.9	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

Lab Sample ID	NJDEP	4423.08	4423.09	4423.10	4423.11	4434.02	4434.03	4434.04	4434.05	4434.06	4434.07	4434.08	4434.09	4434.10	4434.11	4443.02	4443.03
	Cleanup																
Field Sample Location	Criteria	B90 (6-12")	B90 (24")	B91 (6-12")	B91 (24")	B92 (6-12")	B92 (24")	B93 (6-12")	B93 (24")	B94 (6-12")	B94 (24")	B95 (6-12")	B95 (24")	B96 (6-12")	B96 (24")	B97 (6-12")	B97 (24")
Sample Date	(mg/kg)	4/16/1999	4/16/1999	4/16/1999	4/14/1999	4/20/1999	4/20/1999	4/20/1999	4/20/1999	4/20/1999	4/20/1999	4/20/1999	4/20/1999	4/20/1999	4/20/1999	4/26/1999	4/26/1999
Volatiles (mg/kg) Acetone	1000	1	ND		ND		ND	1	ND		ND		ND	1	ND	1	ND
Methylene Chloride	49		1.50		1.50		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg)		10	1		1	NB		110	1			ND				110	
Naphthalene 2-Methylnaphthalene	230 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene Azobenzene	2300 NLE	ND ND		ND ND		ND ND		ND ND		ND 0.099 J		ND ND		0.16 J ND		ND ND	
Phenanthrene	NLE	0.44 J		ND		0.29 J		ND		0.099 J		ND		2.8		ND	
Anthracene	10,000	ND		ND		ND		ND		0.12 J		ND		0.47 J		ND	
Di-n-butylphthalate	5700	1.0 JB		0.56JB		ND		0.51JB		0.21JB		0.44JB		0.62JB		0.19JB	
Fluoranthene	2300	0.77 J		0.15 J		0.39 J		ND		0.17 J		ND		3.6		0.3 J	
Pyrene	1700	0.96 J		0.18 J		0.43 J		ND		0.18 J		ND		3.3		0.31 J	
Benzo[a]anthracene Chrysene	0.9 9	0.5 J 0.82 J		ND 0.15 J		0.19 J 0.34 J		ND ND		0.13 J 0.23 J		ND ND		1.4 2.4		0.44 J 0.5 J	
bis(2-Ethylhexyl)phthalate	49	ND		ND		ND		0.18JB		0.18JB		ND		0.21JB		2.0 B	
Benzo[b]fluoranthene	0.9	0.44 J		ND		0.21 J		ND		0.12 J		ND		1.0 J		0.33 J	
Benzo[k]fluoranthene	0.9	0.49 J		ND		0.21 J		ND		0.15 J		ND		1.1 J		0.38 J	
Benzo[a]pyrene Indeno[1,2,3-cd]pyrene	0.66	0.48 J 0.29 J		ND ND		0.21 J ND		ND ND		ND ND		ND ND		1.0 J 0.47 J		0.38 J ND	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	ND		ND		ND		ND		ND		ND		0.54 J		0.15 J	
Pesticides/PCBs (mg/kg)																	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide 4,4'-DDE	NLE 2	ND 0.055		ND 0.018		ND 0.055		ND 0.022		ND 0.095		ND 0.066		ND 0.066		ND 0.082	
4,4-DDE Dieldrin	0.042	0.055 ND		0.018 ND		0.055 ND		0.022 ND		0.095 ND		0.066 ND		0.066 ND		0.082 ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	ND		ND		0.037		0.027		0.118		ND		0.041		0.033	
4,4'-DDT	2	0.066		0.037		0.031		ND		ND		0.044		0.194		0.225	
gamma-Chlordane alpha-Chlordane	NLE NLE	ND 0.022		ND ND		0.041		ND ND		ND ND		0.028		0.013 ND		ND ND	
Arochlor 1016	0.49	0.022 ND		ND		0.046 ND		ND		ND		0.029 ND		ND		ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260 Metals (mg/kg)	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Aluminum	NLE	11600		13100		11000		6590		8610		12000		10700		11300	
Antimony	14	1.02		1.78		1.16		0.525		0.728		1.62		1.15		3.19	
Arsenic	20	7.36		14.9		10.6		9.64		9.41		9.77		7.74		9.27	
Barium	700	53.3		34		75.4		44.8		39.2		104		44.2		41.3	
Beryllium	2 39	0.843		1.08 ND		0.983		1.19 0.639		1.35 0.171		1.07 0.772		0.835		0.83	
Cadmium Calcium	39 NLE	1.17 7830		1940		0.287 5850		769		1550		14900		156 3110		3770	
Chromium	NLE	79.1		114		99.4		92.8		119		86.3		81.4		80.9	
Cobalt	NLE	3.7		1.84		2.42		1.69		2.34		3.06		2.48		2.53	
Copper	600	25.4		15.4		39.6		7.38		9.85		53.7		33.4		30.6	
Iron	NLE 400	27000 76.6		31200 122		29600 74.9	1	21500 17.6		28700 23.4		29800 121		24400 59.6		27600 69.4	
Lead Magnesium	400 NLE	4180		3810		3830		2350		23.4 3580		4170		2970		3130	
Magnese	NLE	131		71.5		123		20.7		27.9		362		204		121	
Mercury	14	0.034		0.034		0.332		0.108		0.135		0.458		0.259		0.146	
Nickel	250	15		7.75		16.6		7.3		9.14		14.4		9.31		8.83	
Potassium	NLE	5300		7020		6700		5050		7410		6760		5560		5170	
Selenium Silver	63 110	1.39 ND		1.28 ND		1.27 ND		1.97 ND		1.76 ND		1.25 ND		ND ND		1.19 ND	
Sodium	NLE	328		113		279		101		142		217		165		143	
Thallium	2	ND		ND		ND		ND		ND		ND		ND		ND	
Vanadium	370	77.8		58.4		52		39.4		45.4		49.8		43.5		47.9	
Zinc	1500	150		84.9		294		63.4		81.1		273		131		164	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank

NS:= Not Sampled

						*											
Lab Sample ID	NJDEP	4443.04	4443.05	4443.06	4443.07	4443.08	4443.09	4443.10	4443.11	4446.02	4446.03	4446.04	4446.05	4446.06	4446.07	4446.08	4446.09
Field Comple Leastion	Cleanup	B98 (6-12")	B98 (24")	B99 (6-12")	B99 (24")	B100 (6-12")	B100 (24")	B101 (6-12")	B101 (24")	B102 (6-12")	B102 (24")	B103 (6-12")	B103 (24")	B104 (6-12")	D104 (24")	B105 (6-12")	B105 (24")
Field Sample Location	Criteria		B98 (24°)	Baa (p-15.)		· · ·		· · ·		· · ·		• •		B104 (6-12")	B104 (24")	B105 (6-12")	B105 (24°)
Sample Date	(mg/kg)	4/26/1999	4/26/1999	4/26/1999	4/26/1999	4/26/1999	4/26/1999	4/26/1999	4/26/1999	4/27/1999	4/27/1999	4/27/1999	4/27/1999	4/27/1999	4/27/1999	4/27/1999	4/27/1999
Volatiles (mg/kg)																	
Acetone	1000		ND		ND		ND		2.20		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND ND		ND		ND ND		ND		ND		ND		ND
Chlorobenzene Semi-Volatiles (mg/kg)	37		ND		ND		ND		ND		ND		ND		ND		ND
Naphthalene	230	ND	1	ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND		ND	
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Phenanthrene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Anthracene	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Di-n-butylphthalate	5700	0.33JB		0.14JB		0.17JB		ND		ND		0.31 J		0.3 J		0.24 J	
Fluoranthene	2300	0.18 J	l	0.13 J		0.12 J		0.16 J		ND		ND		ND		ND	
Pyrene	1700	0.17 J	+	0.17 J		0.13 J		0.16 J		ND		ND		0.13 J		ND	
Benzo[a]anthracene	0.9	0.15 J	+	ND		ND		ND		ND ND		ND ND		ND 0.14 J		ND	
Chrysene bis(2-Ethylhexyl)phthalate	9 49	0.22 J ND		0.17 J ND	1	0.17 J ND		0.17 J 0.12JB	1	ND ND	1	ND 0.14 J		0.14 J 0.23 J		ND ND	
Benzo[b]fluoranthene	0.9	ND	t	ND		ND		ND		ND		0.14 J ND		0.23 J ND		ND	
Benzo[k]fluoranthene	0.9	ND	1	ND		ND		ND		ND		ND		ND		ND	
Benzo[a]pyrene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Indeno[1,2,3-cd]pyrene	0.9	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Pesticides/PCBs (mg/kg)																,,	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE Dieldrin	2 0.042	0.067 ND		0.044 ND		0.119 ND		0.03 ND		0.028 ND		0.014 ND		0.027 ND		0.295 ND	
	17	ND		ND		ND		ND		ND		ND		ND		ND	
Endrin 4,4'-DDD	3	0.026		0.088		0.186		ND		0.482		ND		0.021		0.299	
4,4'-DDT	2	0.076		0.047		0.073		ND		0.402 ND		0.031		ND		0.036	
gamma-Chlordane	NLE	0.027		ND		ND		ND		0.025		ND		ND		ND	
alpha-Chlordane	NLE	0.023		ND		ND		ND		0.017		ND		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)								1									
Aluminum	NLE	7130		12700		7660		10800		14100		14200		14800		15200	
Antimony	14	1.34		0.731		0.665		1.06		0.495		0.665		1.16		0.692	
Arsenic	20	7.03	+	11.3		7.18		7.9		9.09		13.6		13		10.5	
Barium	700	47.7		31.1		27.9		50.1		86.4		46.6		39		35	
Beryllium	2 39	0.651 0.71		1.67 0.384	1	0.959 ND		0.757	1	1.21 0.687	1	1.65 ND		1.43 ND		1.15 ND	
Cadmium Calcium	39 NLE	5210	+	1060		576		8560		3540		1750		1790		1180	
Chromium	NLE	59.9	1	188		108		70.9		110		166		91.6		96.2	
Cobalt	NLE	2.15		0.852		0.742		2.45		3.15		1.85		2.49		2.56	
Copper	600	27.2	1	8.96		6.09		26		20.8		15.8		16.3		9.13	
Iron	NLE	19200		42600		27700		24400		24100		47000		40700		35100	
Lead	400	147		14.9		9.58		57.6		77.2		21.9		69.9		49.7	
Magnesium	NLE	2520		5910		3170		4290		3090		5810		2640		3480	
Manganese	NLE	195		26.6		14.7		267		95.9		68.2		84.6		37.4	
Mercury	14	0.177		0.092		0.041		0.228		0.119		0.052		8.091		5.465	
Nickel	250	7.52		5.04		3.41		9.28		11.2		9.29		9.15		8.63	
Potassium	NLE	4280		13700		7170		5130		6480		12600		4900	-	8100	
Selenium	63	ND		1.1		1.16		1.05		1.35		0.936		0.763		ND	
Silver	110	ND		ND		ND		ND		ND		ND		ND		5.08	
Sodium	NLE	197		118		104		227		432		124		142		142	
Thallium	2	ND		ND		ND		ND		ND		ND		ND		ND	
Vanadium	370	32.7		64.8		41		43.4		54.6		77.6		74.8		61.6	
Zinc	1500	208		70.9		51.4		130		101		95.9		99.6		117	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank

NS:= Not Sampled

Lab Sample ID	NJDEP	4446.10	4446.11	4446.12	4446.13	4462.02	4462.03	4462.04	4462.05	4462.06	4462.07	4462.08	4462.09	4462.10	4462.11	4466.02	4466.03
	Cleanup																
Field Sample Location	Criteria (mg/kg)	B106 (6-12")	B106 (24")	B107 (6-12")	B107 (24")	B108 (6-12")	B108 (24")	B109 (6-12")	B109 (24")	B110 (6-12")	B110 (24")	B111 (6-12")	B111 (24")	B112 (6-12")	B112 (24")	B113 (6-12")	B113 (24")
Sample Date	(mg/kg)	4/27/1999	4/27/1999	4/27/1999	4/27/1999	5/4/1999	5/4/1999	5/4/1999	5/4/1999	5/4/1999	5/4/1999	5/4/1999	5/4/1999	5/4/1999	5/4/1999	5/6/1999	5/6/1999
Volatiles (mg/kg) Acetone	1000	1	ND	1	ND	1	ND		ND		ND		ND	1	ND		4.10
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		4.10 ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg) Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate Fluorene	10,000 2300	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Phenanthrene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Anthracene	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Di-n-butylphthalate	5700	0.18 J		0.37 J		0.4 J		0.61 J		0.3 J		0.65 J		ND		0.35JB	
Fluoranthene Pyrene	2300 1700	ND ND		ND ND		ND ND		0.14 J 0.16 J		ND ND		ND ND		ND 0.13 J		0.18 J 0.19 J	
Benzo[a]anthracene	0.9	ND		ND		ND		ND		ND		ND		ND		ND	
Chrysene	9	0.17 J		ND		ND		0.15 J		ND		0.12 J		0.2 J		0.22 J	
bis(2-Ethylhexyl)phthalate	49	ND		ND		0.22 J		0.13 J		0.18 J		0.17 J		0.13 J		0.12 J	
Benzo[b]fluoranthene Benzo[k]fluoranthene	0.9	ND 0.12 J		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Benzo[a]pyrene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Indeno[1,2,3-cd]pyrene	0.9	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene Pesticides/PCBs (mg/kg)	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE	2	0.257		ND		ND		0.011		ND		0.02		0.173		0.079	
Dieldrin	0.042	ND		ND		ND		ND		ND		ND		ND		ND	
Endrin 4,4'-DDD	17 3	ND 0.941		ND ND		ND ND		ND ND		ND ND		ND 0.029		ND 0.156		ND 0.02	
4,4'-DDT	2	0.293		ND		ND		ND		ND		0.029 ND		0.136		0.121	
gamma-Chlordane	NLE	0.046		ND		ND		ND		ND		ND		ND		0.014	
alpha-Chlordane	NLE	0.048		ND		ND		ND		ND		ND		ND		0.014	
Arochlor 1016	0.49	ND		ND		ND		ND		ND ND		ND		ND ND		ND	
Arochlor 1242 Arochlor 1248	0.49 0.49	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	1
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)	n			1	0	r		r		n			0	1			
Aluminum	NLE 14	13100 0.781		8810 0.903		13500 0.939		17600 0.952		5290 0.954		11700 0.765		8390 2.1		8310 1.11	
Antimony Arsenic	20	0.781		7.07		0.939		0.952		0.954		0.765		2.1		1.11 8.96	
Barium	700	18.3		34.7		41.9		31.8		16.4		21		200		28.4	
Beryllium	2	1.28		0.708		1.34		1.42		0.377		0.892		0.99		0.702	
Cadmium	39	ND		ND		ND		ND		8.11		ND		0.569		ND	
Calcium	NLE	695		4140		356		1200		5850		1420		2730		1350	
Chromium Cobalt	NLE NLE	147 0.955		59.7 2.97		124 1.36		148 1.72		41.8 1.62		79.8 1.89		80.6 2.56		64.9 1.72	
Copper	600	9.69		35.9		6.28		8.48		14.5		7.48		79.9		19.5	
Iron	NLE	36700		23400		38700		40400		13500		26800		24900		18800	
Lead	400	22.7		52.5		10.5		17		40.5		16.4		107		48.1	
Magnesium	NLE NLE	3950		3060 83.9		3650 32.5		4590 53.6		1400 60		2290		2180		1680	
Manganese Mercury	14	21.8 0.315		0.071		32.5		53.6		60 0.045		48.7 0.031		551 0.267		49.9 0.153	
Nickel	250	5.9		12.2		6.48		7.49		5.26		9.73		8.21		6.4	
Potassium	NLE	8980		4270		10200		11800		2420		5630		5900		4080	
Selenium	63	1.05		0.704		1.03		1.04		ND		ND		1.66		1.07	
Silver Sodium	110 NLE	ND 125		ND 146		ND 112		ND 104		ND 105		ND 97.1		ND 147		ND 89.1	
	I NLE	125		140													
	2	ND		ND		ND		ND		ND		ND		ND		ND	
Thallium Vanadium	2 370	ND 57.8		ND 45.7		ND 53.2		ND 67.5		ND 24.7		ND 77.5		ND 31.4		ND 33.4	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank

NS:= Not Sampled

Lab Sample ID	NJDEP	4466.04	4466.05	4466.06	4466.07	4466.08	4466.09	4466.10	4466.11	4466.12	4466.13	4468.02	4468.03	4468.04	4468.05	4468.06	4468.07
Field Sample Location	Cleanup	B114 (6-12")	B114 (24")	B115 (6-12")	B115 (24")	B116 (6-12")		B117 (6-12")	B117 (24")	B118 (6-12")	B118 (24")	B119 (6-12")	B119 (24")	B120 (6-12")		B121 (6-12")	B121 (24")
	Criteria (mg/kg)	• • •			. ,	· · ·	B116 (24")		. ,	· · ·	. ,		. ,	· ,	B120 (24")		
Sample Date	(5/6/1999	5/6/1999	5/6/1999	5/6/1999	5/6/1999	5/6/1999	5/6/1999	5/6/1999	5/6/1999	5/6/1999	5/7/1999	5/7/1999	5/7/1999	5/7/1999	5/7/1999	5/7/1999
Volatiles (mg/kg) Acetone	1000	1	4.40	1	4.20		4.30	1	ND		4.70		3.70		4.30	1	ND
Methylene Chloride	49		4.40 ND		4.20 ND		4.30 ND		ND		4.70 ND		ND		4.30 ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg)		110		10								115					
Naphthalene 2-Methylnaphthalene	230 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene Azobenzene	2300 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Phenanthrene	NLE	ND		0.14 J		0.26 J		ND		ND		ND		ND		0.2 J	
Anthracene	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Di-n-butylphthalate	5700	0.34JB		0.54JB		0.54JB		0.13JB		0.7JB		0.87JB		0.22JB		0.67JB	
Fluoranthene	2300	0.12 J		0.17 J		0.27 J		ND		ND		0.13 J		0.15 J		0.25 J	
Pyrene	1700	0.15 J		0.15 J		0.36 J		ND		ND		0.14 J		0.21 J		0.24 J	
Benzo[a]anthracene Chrysene	0.9	ND 0.14 J		ND ND		0.18 J 0.3 J		ND ND		ND ND		ND ND		ND 0.18 J		0.14 J 0.24 J	
bis(2-Ethylhexyl)phthalate	49	0.14 J		0.19 J		0.3 J 0.14 J		0.18 J		0.12 J		0.32 J		0.18 J		0.24 J 0.12 J	
Benzo[b]fluoranthene	0.9	ND		ND		0.14 J		ND		ND		ND		ND		ND	
Benzo[k]fluoranthene	0.9	ND		ND		0.14 J		ND		ND		ND		ND		ND	
Benzo[a]pyrene	0.66	ND		ND		0.17 J		ND ND		ND ND		ND ND		ND ND		0.11 J ND	
Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene	0.66	ND ND		ND ND		ND ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	ND		ND		0.15 J		ND		ND		ND		ND		ND	
Pesticides/PCBs (mg/kg)	•																
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE Dieldrin	2 0.042	0.044 ND		0.013 ND		ND ND		ND ND		ND ND		0.34 ND		0.019 ND		0.023 ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	0.027		ND		ND		ND		ND		0.172		0.022		0.014	
4,4'-DDT	2	0.028		0.034		ND		ND		ND		1.836		0.124		0.057	
gamma-Chlordane	NLE	0.024		ND		ND		ND		ND		ND		0.012		ND	
alpha-Chlordane	NLE	0.017		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1016 Arochlor 1242	0.49	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		1.764		ND	
Metals (mg/kg)					1						1						
Aluminum Antimony	NLE 14	9570 1.24		11500 0.72		5010 1.28		16200 0.789		10100 0.538		18400 1.25		13200 0.913		17700 0.942	
Arsenic	20	8.85		10.72		4.37		17.1		5.19		1.25		15.5		12.4	
Barium	700	26.3		32.6		11.5		42.5		21.7		19.7		29.8		37.4	
Beryllium	2	0.754		0.762		0.327		1.38		0.383		1.52		1.19		1.13	-
Cadmium	39	4.3		ND		ND		ND		0.802		ND		ND		ND	
Calcium	NLE	1790		3650		852		2850		275 44		868		1640		1170	
Chromium Cobalt	NLE NLE	64.1 2.74		79.7 2.32		58.3 1.15		143 2.46		44 1.39		135 2.02		128 1.38		111 2.39	
Copper	600	26.6		15.1		15.2		2.40		7.12		12.9		21.8		2.39	
Iron	NLE	26000		25600		14000		40600		15400		45400		33200		33300	
Lead	400	37.9		30.4		16.1		42.1		8.74		30.4		30.1		32	
Magnesium	NLE	2140		2190		799		4660		899		4540		3770		3310	
Manganese	NLE	69.7		212		41.4		153		54.7		52.9		57		51.8	
Mercury Nickel	14 250	0.073 7.32		0.071 7.96		ND 3.01		0.08 69.4		0.035		0.043 8.97		0.063 6.78		0.269 7.78	
Potassium	250 NLE	4490		4130		1880		11300		2320		8.97		9600		8270	
Selenium	63	0.781		0.808		ND		0.897		ND		1.34		0.817		0.913	
Silver	110	ND		ND		ND		ND		ND		ND		ND		ND	
Sodium	NLE	178		201		218		215		58.2		132		247		203	
Thallium	2	ND		ND 10.0		ND		ND		ND		ND		ND		ND	
Vanadium	370 1500	44.9 83.9		43.3 87.2		43.1 52.4		59.8 102		35.6 35.2		63.1 70.5		51.1 71.7		65.2 62.3	
Zinc	1000	03.5		01.2		JZ.4		102		33.2		10.0		11.1		02.0	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

NS:= Not Sampled ND:= Analyte not detected in sample NLE:= No cleanup standard exists for this analyte J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero. N = Presumplive evidence of a compound "Resample for 4443.08 for Pest/PCB ret#4526.01 B100

(I	·		1				1								1 1	
Lab Sample ID	NJDEP	4468.08	4468.09	4468.10	4468.11	4468.12	4468.13	4468.14	4468.15	4468.16	4468.17	4468.18	4468.19	4472.02	4472.03	4472.04	4472.05
Field Oceanie Location	Cleanup	D400 (0.40%)	D400 (041)	D400 (0.400)	D400 (041)	D404 (0 400)	D404 (041)	D405 (0.400)	D405 (041)	D400 (0.40%)	D400 (041)	D407 (0 400)	D407 (041)	D400 (0.40%)	D400 (041)	D400 (0.401)	D400 (041)
Field Sample Location	Criteria	B122 (6-12")	B122 (24")	B123 (6-12")	B123 (24")	B124 (6-12")	B124 (24")	B125 (6-12")	B125 (24")	B126 (6-12")	B126 (24")	B127 (6-12")	B127 (24")	B128 (6-12")	B128 (24")	B129 (6-12")	B129 (24")
Sample Date	(mg/kg)	5/7/1999	5/7/1999	5/7/1999	5/7/1999	5/7/1999	5/7/1999	5/7/1999	5/7/1999	5/7/1999	5/7/1999	5/7/1999	5/7/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999
Volatiles (mg/kg)																	
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene Chlorobenzene	1000 37		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND
Semi-Volatiles (mg/kg)	57		ND		ND	1	ND	1	ND		ND	1	ND		ND	1	ND
Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		0.16 J		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene Azobenzene	2300 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Phenanthrene	NLE	ND		ND		1.3		ND		ND		ND		0.21 J		0.18 J	
Anthracene	10.000	ND		ND		0.23 J		ND		ND		ND		ND		ND	
Di-n-butylphthalate	5700	0.17JB		0.25JB		ND		ND		0.29JB		0.56JB		0.67JB		0.61JB	
Fluoranthene	2300	ND		ND		1.6		0.2 J		ND		ND		0.35 J		0.3 J	
Pyrene	1700	ND		ND		1.8		0.27 J		ND		ND		0.38 J		0.32 J	
Benzo[a]anthracene	0.9	ND		ND		0.72 J		0.15 J		ND		ND		0.18 J		0.19 J	
Chrysene bis(2-Ethylhexyl)phthalate	9 49	ND ND		ND ND		1.1 J ND		0.25 J 0.39 J		ND ND		ND ND		0.41 J 0.26 J		0.37 J 0.27 J	
Benzo[b]fluoranthene	0.9	ND		ND		0.44 J		0.39 J 0.14 J		ND		ND ND		0.26 J 0.17 J		0.27 J 0.18 J	
Benzo[k]fluoranthene	0.9	ND		ND		0.44 J		0.13 J		ND		ND		0.18 J		0.15 J	
Benzo[a]pyrene	0.66	ND		ND		0.54 J		0.16 J		ND		ND		0.19 J		0.19 J	
Indeno[1,2,3-cd]pyrene	0.9	ND		ND		0.34 J		ND		ND		ND		0.13 J		ND	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene Pesticides/PCBs (mg/kg)	NLE	ND		ND		0.44 J		ND		ND		ND		0.14 J		ND	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE	2	ND		0.013		0.012		0.026		ND		0.013		0.021		0.035	
Dieldrin	0.042	ND		ND		ND		ND		ND		ND		ND		ND	-
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	ND		ND		ND		0.022		ND		0.017		0.025		0.059	
4,4'-DDT	2	ND		ND		ND		ND		ND		0.038		ND		0.04	
gamma-Chlordane alpha-Chlordane	NLE NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		0.015 0.013	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		0.013 ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	U
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)	u	T.		I.				1 1						1			
Aluminum	NLE	12000		17200		18600		12800		5780		12600		11000		10500	
Antimony Arsenic	14 20	0.57		1.12 13.2		0.932		1.1 10.4		1.02 4.47		1.1 21.2		1.43 10.3		0.861 8.7	
Barium	700	20.4		38.7		49.9		37.6		9.7		19.2		33.8		35.3	
Beryllium	2	1.18		1.32		1.68		0.949		0.29		1.01		0.907		0.816	
Cadmium	39	ND		ND		0.885		ND		ND		ND		1.34		0.595	
Calcium	NLE	705		3480	-	2810		2710		111	-	1260		2530		1930	
Chromium	NLE	99		157		136		97.5		30.9		103		170		81.4	
Cobalt	NLE	1.86		2.88		3.64		2.84		1.08		1.3		2.46		2.29	
Copper	600	9.03		25.5		21.4 48900		22.9		4.32 13100		12.1 29000		20.5		19.9 25500	
Iron Lead	NLE 400	34500 9.95		40400 36.5		48900		30700 47.6		5.27		29000		28500 41.9		25500	
Magnesium	400 NLE	3180		4520		4670		3320		575		2430		3590		2800	
Manganese	NLE	37.5		298		147		175		35.3		56.1		164		66	
Mercury	14	0.04		0.054		0.099		0.101		0.066		0.153		0.619		1.571	
Nickel	250	6.58		9.28		11.2		17		3.53		6.12		9.27		7.78	
Potassium	NLE	9010		10100		12700		7370		1450		5980		6860		5660	
Selenium	63	ND		1.08		1.02		0.902		0.711		2.28		1.27		1.36	
Silver	110 NLE	ND		ND 222		ND 199		ND 222		ND 94.4		ND 111		ND 141		ND 158	
Sodium Thallium	NLE 2	131 ND	1	222 ND		199 ND	1	222 ND		94.4 ND		111 ND	1	141 ND		158 ND	
Vanadium	370	50.7		65.6		63.1		49.9		26.5		40		48.3		50	
Zinc	1500	54.1		95.6		125		125		29.6		72		83.7		87.4	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

NS:= Not Sampled ND:= Analyte not detected in sample NLE:= No cleanup standard exists for this analyte J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero. N = Presumplive evidence of a compound "Resample for 4443.08 for Pest/PCB ret#4526.01 B100

Lab Sample ID	NJDEP	4472.06	4472.07	4472.08	4472.09	4472.10	4472.11	4472.12	4472.13	4472.14	4472.15	4472.16	4472.17	4472.18	4472.19	4472.20	4472.21
	Cleanup																
Field Sample Location	Criteria	B130 (6-12")	B130 (24")	B131 (6-12")	B131 (24")	B132 (6-12")	B132 (24")	B133 (6-12")	B133 (24")	B134 (6-12")	B134 (24")	B135 (6-12")	B135 (24")	B136 (6-12")	B136 (24")	B137 (6-12")	B137 (24")
Sample Date	(mg/kg)	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999
Volatiles (mg/kg)	ж																
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg)																	
Naphthalene	230	ND		0.4 J		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		0.16 J		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		0.58 J		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		0.31 J		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		0.11 J		ND		0.17 J		ND		ND	
Fluorene	2300	ND		0.5 J		ND		ND		ND		ND		ND		ND	
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Phenanthrene	NLE	0.16 J		4.0		0.71 J		ND		ND		ND		ND		0.21 J	
Anthracene	10,000	ND 0.10 ID		0.75 J		0.21 J		ND 0.16 ID		ND 0.55 ID		ND 0.45 ID		ND		ND 0.02 ID	
Di-n-butylphthalate	5700	0.19JB		0.81JB		0.48JB		0.16JB		0.55JB		0.45JB		0.88JB		0.93JB	
Fluoranthene Pyrene	2300 1700	0.26 J 0.29 J		4.2		1.9 1.5		ND ND		ND ND		0.23 J 0.2 J		ND ND		0.34 J 0.29 J	
	0.9	0.29 J		1.6		0.84 J		ND		ND		ND		ND		0.29 J 0.18 J	
Benzo[a]anthracene Chrysene	0.9	0.33 J		2.8		0.84 J 1.4		ND		ND		0.29 J		ND		0.18 J 0.34 J	
bis(2-Ethylhexyl)phthalate	49	0.35 J		0.12 J		0.16 J		ND		0.14 J		0.29 J		0.17 J		0.34 J 0.15 J	
Benzo[b]fluoranthene	0.9	0.18 J		1.3		0.68 J		ND		ND		0.12 J		ND		0.15 J	
Benzo[k]fluoranthene	0.9	0.18 J		1.3		0.63 J		ND		ND		ND		ND		0.15 J	
Benzo[a]pyrene	0.66	0.21 J		1.6		0.77 J		ND		ND		ND		ND		0.17 J	
Indeno[1,2,3-cd]pyrene	0.9	0.15 J		0.9 J		0.44 J		ND		ND		ND		ND		ND	
Dibenz[a,h]anthracene	0.66	ND		0.29 J		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	0.16 J		0.93 J		0.45 J		ND		ND		ND		ND		ND	
Pesticides/PCBs (mg/kg)																	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE	2	0.014		0.01		0.018		ND		ND		0.029		0.021		0.018	
Dieldrin	0.042	ND		ND		ND		ND		ND		0.029		ND		ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	0.019		ND		ND		ND		ND		0.044		0.08		0.033	
4,4'-DDT	2	ND		ND		ND		ND		ND		0.032		ND		ND	
gamma-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
alpha-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1242	0.49	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Arochlor 1248																	
Arochlor 1254 Arochlor 1260	0.49	ND ND		ND ND		ND ND	1	ND ND	1	ND ND		ND ND		ND ND		ND ND	
Metals (mg/kg)	0.49	UN	I	ND		ND.		ND		ND	L	UNI		INU		ND	
Aluminum	NLE	12100		17300		12500		5940		8930		12500		7700		9250	
Antimony	14	1.1		1.16		0.712		5940 ND		ND		1.19		0.903		0.971	
Arsenic	20	19.4		15.1		11		4.56		4.2		16.2		14.9		6.79	
Barium	700	42.5		54.3		32.4		24		16.8		29.6		83.4		27.2	
Beryllium	2	1.15		1.82		1.28		0.331		0.359		1.06		1.12		0.697	
Cadmium	39	0.699	l	0.697		0.563		0.246		0.217		1.21		0.413		0.681	
Calcium	NLE	5190	l	800		2610		353		180		1910		2110		1710	
Chromium	NLE	175	l	235		104		37.3		37.6		115		113		63.8	
Cobalt	NLE	2.13		1.04		2.63		1.52		1.46		1.72		1.24		2.08	
Copper	600	24.3		11.8		11		10.8		4.3		28.8		11		11.9	
Iron	NLE	44500		56500		39300		14400		15100		33100		32000		23400	
Lead	400	29.8		11.2		28.4		10.5		5.79		36.9		13.4		40.4	
Magnesium	NLE	4380		7390		4170		899		993		3750		3950		2400	
Manganese	NLE	503		31		87.8		65.2		38.6		66.2		50.5		62.6	
Mercury	14	0.585		0.292		0.244		0.161		0.241		0.627		0.202		0.19	
Nickel	250	7.67		7.75		9.48		3.71		4.0		8.01		5.68		7.74	
Potassium	NLE	8260		16900		9620		1930		2330		7480		9840		5040	
Selenium	63	2.7		3.06		1.02		0.808		ND		1.74		3.15		1.15	
Silver	110	ND		ND		ND		ND		ND		1.58		ND		ND	
Sodium	NLE	928		869		367		419		78.6		888		159		162	
Thallium	2	ND		ND		ND		ND		ND		ND		ND		ND	
Vanadium	370	52.6		71.9		53.6		32.9		32.7		59.5		31		52.1	
Zinc	1500	90.3		81		66.4		51.7		18.4		78.3		109		63.7	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution

B = Compound in related blank NS:= Not Sampled

NS:= Not Sampled ND:= Analyte not detected in sample NLE:= No cleanup standard exists for this analyte J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero. N = Presumplive evidence of a compound "Resample for 4443.08 for Pest/PCB ret#4526.01 B100

	1														
Lab Sample ID	NJDEP	4472.22	4472.23	4472.24	4472.25	4472.26	4472.27	4472.28	4472.29	4472.30	4472.31	4475.02	4475.03	4475.04	4475.05
Field Sample Location	Cleanup Criteria	B138 (6-12")	B138 (24")	B139 (6-12")	B139 (24")	B140 (6-12")	B140 (24")	B141 (6-12")	B141 (24")	B142 (6-12")	B142 (24")	B142A (6-12")	B142A (24")	B143 (6-12")	B143 (24")
-	(mg/kg)					. ,									• •
Sample Date Volatiles (mg/kg)		5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/10/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999
Acetone	1000		ND	1	ND	1	ND		ND	1	ND	1	ND		ND
Methylene Chloride	49		ND		ND		ND		ND		3.20		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg)			1		1										
Naphthalene	230 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
2-Methylnaphthalene Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		0.18 J		ND		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND	
Azobenzene	NLE	ND		ND		ND 0.11		ND		ND		ND		ND	
Phenanthrene Anthracene	NLE 10,000	ND ND		ND ND		0.11 J ND		0.11 J ND		ND ND		ND ND		ND ND	
Di-n-butylphthalate	5700	0.23JB		0.41JB		0.23JB		0.81JB		0.15JB		0.24JB		0.41JB	
Fluoranthene	2300	ND		0.34 J		0.16 J		0.24 J		ND		ND		ND	
Pyrene	1700	ND		0.33 J		0.15 J		0.25 J		ND		ND		ND	
Benzo[a]anthracene	0.9	ND		0.24 J		ND		0.13 J		ND		ND		ND	
Chrysene	9	ND		0.46 J		0.18 J		0.28 J		ND		ND		ND	
bis(2-Ethylhexyl)phthalate Benzo[b]fluoranthene	49 0.9	ND ND		0.13 J 0.26 J		0.21 J ND		0.33 J 0.13 J		ND ND		ND ND		ND ND	
Benzo[k]fluoranthene	0.9	ND		0.20 J		ND		0.13 J		ND		ND		ND	
Benzo[a]pyrene	0.66	ND		0.27 J		ND		0.15 J		ND		ND		ND	
Indeno[1,2,3-cd]pyrene	0.9	ND		0.18 J		ND		ND		ND		ND		ND	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	ND		0.17 J		ND		ND		ND		ND		ND	
Pesticides/PCBs (mg/kg) gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE	2	0.056		0.019		0.01		0.061		ND		3.705		0.018	
Dieldrin	0.042	ND		ND		ND		ND		ND		ND		ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	0.21		0.033		ND		0.101		ND		1.75		0.022	
4,4'-DDT	2	ND 0.019		0.028 ND		ND		0.083		ND		6.811		ND	
gamma-Chlordane alpha-Chlordane	NLE NLE	ND		ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND	7
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND	1	ND	1	ND		ND	1	ND		ND		ND	
Metals (mg/kg)	NLE	6700		12000		4170		7960		5100		6510		10700	
Aluminum Antimony	NLE 14	3.4		0.868		4170 ND		0.681		5100 ND		0.939		10700	
Arsenic	20	6.9		13.7		5.02		7.29		3.81		7.77		11.5	
Barium	700	38.8		40.1		17.5		44.6		8.96		13.2		46.5	
Beryllium	2	0.564		1.12		0.399		0.66		0.281		0.751		1.18	
Cadmium	39	0.328		0.573		0.382		0.406		0.252		0.369		0.616	
Calcium	NLE	1710		1820		6300		1410		117		384		1380	
Chromium	NLE	41.9		99.7 2.61		41.7		62.3		32.1		54.7		107	
Cobalt	NLE 600	4.96 51.8		2.61		1.71 14.7		2.17		1.32 3.93		1.31 9.12		1.43 43.2	
Copper Iron	NLE	20300		35900		14.7		18800		13600		18200		34700	
Lead	400	37.4		18		30		29.2		4.95		38.6		39.1	
Magnesium	NLE	2160		4090		3700		2020		696		1060		3520	
Manganese	NLE	59.4		68.7		120		90.7		33.6		11.9		27.2	
Mercury	14	0.522		0.282		0.207		0.213		0.161		0.605		5.836	
Nickel	250	8.55		8.1		5.56		6.06		3.28		6.5		6.33	
Potassium Selenium	NLE 63	3070 ND		9380 1.57		2790 0.708		4070		1480 ND		2160 1.44		7830	
Selenium Silver	63 110	ND ND		1.57 ND		0.708 ND		1.01 ND		ND ND		1.44 ND		1.75 ND	
Sodium	NLE	197		150		334		245		110		96		133	
Thallium	2	ND		ND		ND		ND		ND		ND		ND	
Vanadium	370	31.2		51.6		22.6		36.3		28.6		51.5		48.9	
Zinc	1500	122		94.6		56.5		54.9		15.6		52.4		55.2	

Notes: All concentrations in milligrams per kilogram (mg/kg) E = Value exceeded linear range

D = Value from dilution B = Compound in related blank

NS:= Not Sampled

ND:= Analyte not detected in sample

NU.= A value in to detecte in sample NLE= N cleanup standard exists for this analyte J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero. N = Presumptive evidence of a compound "Resample for 4443.08 for PestPCB ref#4528.01 B100

	NURSE						_								_		
Lab Sample ID	NJDEP Cleanup	4475.06	4475.07	4475.08	4475.09	4475.10	4475.11	4475.12	4475.13	4475.14	4475.15	4475.16	4475.17	4475.18	4475.19	4475.20	4475.21
Field Sample Location	Criteria	B144 (6-12")	B144 (24")	B145 (6-12")	B145 (24")	B146 (6-12")	B146 (24")	B147 (6-12")	B147 (24")	B148 (6-12")	B148 (24")	B149 (6-12")	B149 (24")	B150 (6-12")	B150 (24")	B151 (6-12")	B151 (24")
Sample Date	(mg/kg)	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999
Volatiles (mg/kg)		1				1				1		1				T.	
Acetone Methylene Chloride	1000 49		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg)									r.		0]
Naphthalene 2-Methylnaphthalene	230 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate Fluorene	10,000 2300	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Phenanthrene	NLE	0.15 J		ND		ND		ND		ND		ND		ND		0.65 J	
Anthracene	10,000	3.4		ND		ND		ND		ND		ND		ND		0.17 J	
Di-n-butylphthalate Fluoranthene	5700 2300	0.25JB 0.3 J		0.96JB 0.26 J		0.22JB 0.18 J		0.67JB 0.12 J		0.58JB ND		0.52JB ND		0.82JB 0.2 J		0.83JB 0.84 J	├────┦
Pyrene	2300	0.3 J 0.25 J		0.26 J		0.18 J 0.17 J		0.12 J 0.13 J		ND		ND		0.2 J 0.18 J		0.84 J 0.61 J	
Benzo[a]anthracene	0.9	0.19 J		0.2 J		0.11 J		ND		ND		ND		0.13 J		0.36 J	
Chrysene	9	1.1 J		0.53 J		0.21 J		0.17 J		ND		ND		0.26 J		0.62 J	
bis(2-Ethylhexyl)phthalate Benzo[b]fluoranthene	49 0.9	ND 0.28 J		0.16 J 0.28 J		ND 0.11 J		ND ND		ND ND		ND ND		ND 0.14 J		0.18 J 0.32 J	
Benzo[b]fluoranthene Benzo[k]fluoranthene	0.9	0.28 J 0.27 J		0.28 J 0.2 J		ND		ND		ND		ND		0.14 J 0.11 J		0.32 J 0.31 J	
Benzo[a]pyrene	0.66	0.21 J		0.21 J		0.11 J		ND		ND		ND		0.13 J		0.33 J	
Indeno[1,2,3-cd]pyrene	0.9	ND		ND		ND		ND		ND		ND		ND		0.18 J	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene Pesticides/PCBs (mg/kg)	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE	2	0.044		0.06		0.052		0.018		ND		ND		0.074		0.039	
Dieldrin Endrin	0.042	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
4,4'-DDD	3	0.058		0.055		0.041		0.021		ND		ND		0.135		0.045	
4,4'-DDT	2	0.881		ND		ND		0.264		ND		ND		0.141		0.033	
gamma-Chlordane	NLE	ND		ND		0.019		ND		ND		ND		ND		0.016	
alpha-Chlordane Arochlor 1016	NLE 0.49	ND ND		ND ND		0.028 ND		ND ND		ND ND		ND ND		ND ND		0.013 ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260 Metals (mg/kg)	0.49	ND		ND		ND		ND	1	ND		ND		ND		ND	L
Aluminum	NLE	6430		5810		12100		9420		5030		7100		12400		9880	I
Antimony	14	0.881		1.51		0.818		0.752		0.681		3.21		1.13		0.99	
Arsenic	20	15.1		6.54		8.66	-	6.38		4.28		27.4		9.48	-	7.41	
Barium Beryllium	700 2	68.4 1.02		33.6 0.593		39.5 1.22		30.4 0.90		19.2 0.291		453 0.769		51.7 1.23		78.4 0.641	├─────┨
Cadmium	39	0.723		1.03		0.675		0.90		0.291		2.53		0.724		1.15	├╢
Calcium	NLE	2580		3760		1590		874		317		4200		769		1940	
Chromium	NLE	81.8		49.8		113		84.8		32.3		67.6		135		65.5	
Cobalt	NLE 600	1.55 9.73		2.17 22.6		1.84 23.1		1.42 5.32		1.1 6.29		3.28 266		1.58 13.1		1.94 14.8	├─────┨
Copper Iron	600 NLE	9.73 25700		22.6		23.1 35600		5.32 25600		6.29		266		13.1 37500		14.8	
Lead	400	21.2		48.8		22.6		20.3		7.38		189		26.5		61	
Magnesium	NLE	2760		1870		4190		3030		766		1900		3660		2450	
Manganese	NLE	69.3		85		56.2		31.9		50.1		4680		16.2		82.6	
Mercury Nickel	14 250	0.731 6.8		0.461 8.21		0.366 6.74		0.345 5.12		0.249 3.03		1.686 7.94		0.538 7.28		1.396 6.14	├────┨
Potassium	250 NLE	6910		3720		9750		5.12 7180		1660		2240		8250		3750	
Selenium	63	1.98		1.38		1.04		1.06		1.05		1.82		1.5		0.928	
Silver	110	ND		ND		ND	-	ND		ND		0.63		ND	-	ND	
Sodium Thallium	NLE	164 ND		446 ND		180 ND		156 ND		393 ND		122 ND		116 ND		218	
	2	ND		ND		ND		ND	1	NU		NU		ND		ND	
Vanadium	370	25.3		32		54.7		43.5		28.9		28.1		84.4		38	

 67.6
 117
 107
 38.1
 25

 Notes:
 All concentrations in milligrams per klogram (mg/kg)
 E
 value exceeded linear range

 D = Value from dilution
 B = Compound in related blank
 NS:= Not Sampled

 ND:= Not Sampled
 ND:= Analyte not detected in sample

 NLE:= Not clearup standard exists for this analyte

 J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero.

 N = Presumptive evidence of a compound

 "Resample for 4443.08 for Pest/PCB ref#4526.01 B100

Fort Monmouth, BRAC 05 Facility Contract Number W912DY-09-D-0062, Task Order 0012 Ç<u>-</u>53

Lab Sample ID	NJDEP Cleanup	4475.22	4475.23	4475.24	4475.25	4475.26	4475.27	4475.28	4475.29	4475.30	4475.31	4475.32	4475.33	4485.02	4485.03	4485.04	4485.05
Field Sample Location	Criteria	B152 (6-12")	B152 (24")	B153 (6-12")	B153 (24")	B154 (6-12")	B154 (24")	B155 (6-12")	B155 (24")	B156 (6-12")	B156 (24")	B157 (6-12")	B157 (24")	B158 (6-12")	B158 (24")	B159 (6-12")	B159 (24")
Sample Date	(mg/kg)	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/11/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999
Volatiles (mg/kg)		3/11/1999	3/11/1999	3/11/1333	3/11/1999	3/11/1999	3/11/1999	5/11/1555	3/11/1333	3/11/1999	3/11/1999	3/11/1999	3/11/1999	3/14/1355	3/14/1999	3/14/1999	3/14/1999
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene Chlorobenzene	1000 37		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND
Semi-Volatiles (mg/kg)	57		ND		ND		ND		ND		ND		ND		ND	1	ND
Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene Dibenzofuran	3400 NLE	0.26 J 0.14 J		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene	2300	0.31 J		ND		ND		ND		ND		ND		ND		ND	
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Phenanthrene	NLE	4.1		ND		0.17 J		ND		ND		ND		1.2 J		0.28 J	
Anthracene Di-n-butylphthalate	10,000 5700	0.99 0.65JB		ND 0.9JB		ND 0.76JB		ND 0.64JB		ND ND		ND 1.0 B		0.31 J 0.21 JB		ND 0.15JB	
Fluoranthene	2300	6.2		0.18 J		0.27 J		0.12 J		ND		0.15 J		2.6		0.67 J	
Pyrene	1700	4.4		0.16 J		0.29 J		0.13 J		ND		0.13 J		1.8 J		0.51 J	
Benzo[a]anthracene	0.9	2.4		ND		0.13 J		ND		ND		ND		0.98 J		0.33 J	
Chrysene bis(2-Ethylhexyl)phthalate	9 49	3.7 ND		ND ND		0.28 J 0.35 J		ND ND		ND ND		0.17 J ND		1.4 0.2 J		0.55 J 0.13 J	
Benzo[b]fluoranthene	49	1.9		ND		0.35 J 0.17 J		ND		ND		ND		0.2 J 0.85 J		0.13 J	
Benzo[k]fluoranthene	0.9	1.3		ND		0.12 J		ND		ND		ND		0.63 J		0.24 J	
Benzo[a]pyrene	0.66	1.9		ND		0.14 J		ND		ND		0.099 J		0.84 J		0.31 J	
Indeno[1,2,3-cd]pyrene	0.9	1.1		ND ND		ND ND		ND ND		ND ND		ND ND		0.5 J ND		ND ND	
Dibenz[a,h]anthracene Benzo[g,h,I]perylene	0.66 NLE	0.28 J 1.0		ND		ND		ND		ND		ND		0.46 J		ND	
Pesticides/PCBs (mg/kg)		1.0				110				110		115		0.100		115	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE Dieldrin	2 0.042	0.049 ND		0.112 ND		0.047 ND		ND ND		0.336		0.257 ND		0.086 ND		0.051 ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	0.087		0.153		0.13		0.076		1.163		0.675		0.027		0.029	
4,4'-DDT	2	0.029		0.044		0.033		ND		1.163		0.741		0.085		ND	
gamma-Chlordane	NLE	0.025		0.027		0.017		ND		ND		ND		0.015		0.013	
alpha-Chlordane Arochlor 1016	NLE 0.49	0.018 ND		0.017 ND		0.016 ND		ND ND		ND ND		ND ND		0.017 ND		0.015 ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1254	0.49	ND		ND		ND		1.672		ND		ND		ND		ND	
Arochlor 1260 Metals (mg/kg)	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Aluminum	NLE	9750		14200		6460		10200		15000		12100		8310		6430	
Antimony	14	0.875		2.03		0.851		2.57		0.863		1.54		ND		ND	
Arsenic	20	6.16		14.3		6.04		67.1		15.1		9.62		9.26		6.63	
Barium	700	35.7		81.2		26.5		501		20.8		33.6		56.5		38.8	
Beryllium Cadmium	2 39	0.671 0.544		1.48		0.587 0.882		1.34 1.29		2.00 1.52		1.18 0.472		0.758 0.831		0.663	
Calcium	NLE	1920		3310		1980		3390		501		1050		4000		3630	
Chromium	NLE	71.5		153		53.1		81.9		153		90.8		69.2		46.2	
Cobalt	NLE	2.85		3.1		1.83		4.46		2.88		2.86		2.87		3.61	
Copper Iron	600 NLE	31.8 21700		32.3 42500		14.8 18800		87.8 32800		5.62 57100		41.7 31600		26.6 21700		40.4 16400	
Lead	400	21700		42500		30.8		88.2		11.2		31600		81.8		93.5	
Magnesium	NLE	2600		5730		2370		3760		6300		3590		2350		1660	
Manganese	NLE	186		177		62.4		1080		44.2		37		133		81.6	
Mercury	14	0.398		0.371		0.80		0.756		0.46		1.214		0.059		0.147	
Nickel	250 NLE	7.49 3700		9.65 12400		6.3 4200		11.4 5070		10.4 16900		9.45 6990		11.4 4760		14.8 2670	
Potassium Selenium	63	1.32		12400		4200		1.9		2.06		1.82		1.19		1.18	
Silver	110	ND		ND		ND		ND		ND		ND		ND		ND	
Sodium	NLE	183		381		692		447		115		130		206		139	
Thallium	2	ND		ND		ND		ND		ND		ND		ND		ND	
Vanadium Zinc	370 1500	41.5 88		52.4 217		30.5 68.7		42.7 532		39.4 72.9		52.7 63.3		30.8 161		22.9 202	
LIIIC	1000	00		41/		00./		332	l	12.9		03.3		101	l	202	

 88
 217
 68.7
 532
 72.9

 Notes:
 All concentrations in milligrams per kilogram (mg/kg)
 E
 Value exceeded linear range
 532
 72.9

 D = Value from dilution
 B
 Compound in related blank
 Six Not Sampled
 Six Not Sampled

 ND:=: Not Sampled
 ND:: Analyte not detected in sample
 ND:: Analyte not detected in sample
 ND:: Not Sampled

 N = Fresumplive evidence of a compound
 restimated Value:
 Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero.

 N = Presumplive evidence of a compound
 resample for 4443.08 for Pest/PCB ref#4526.01 B100

Fort Monmouth, BRAC 05 Facility Contract Number W912DY-09-D-0062, Task Order 0012 Ç₅54

Lab Gamala ID	NJDEP	4405.00	4405.07	4405.00	4405.00	4405.40	4405 44	4405.40	4405 40	4405.44	4405.45	4405.40	4405 47	4405.40	1105 10	4405.00	4405.04
Lab Sample ID	Cleanup	4485.06	4485.07	4485.08	4485.09	4485.10	4485.11	4485.12	4485.13	4485.14	4485.15	4485.16	4485.17	4485.18	4485.19	4485.20	4485.21
Field Sample Location	Criteria	B160 (6-12")	B160 (24")	B161 (6-12")	B161 (24")	B162 (6-12")	B162 (24")	B163 (6-12")	B163 (24")	B164 (6-12")	B164 (24")	B165 (6-12")	B165 (24")	B166 (6-12")	B166 (24")	B167 (6-12")	B167 (24")
Sample Date	(mg/kg)	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999
Volatiles (mg/kg) Acetone	1000		ND		ND		ND	1	ND	1	ND		ND		ND	1	ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene Semi-Volatiles (mg/kg)	37		ND		ND		ND		ND		ND		ND		ND		ND
Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	-
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene Dibenzofuran	3400 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND		ND	
Azobenzene	NLE	ND		ND		ND		ND		ND ND		ND		ND		ND	
Phenanthrene Anthracene	NLE 10,000	0.21 J ND		0.39 J ND		0.25 J ND		ND ND		ND		ND ND		0.13 J ND		ND ND	
Di-n-butylphthalate	5700	0.45JB		0.56JB		0.59JB		0.81JB		0.6JB		0.58JB		0.68JB		0.35JB	-
Fluoranthene	2300	0.39 J		0.62 J		0.4 J		ND		0.25 J		ND		0.34 J		0.17 J	-
Pyrene Benzo[a]anthracene	1700 0.9	0.34 J 0.19 J		0.58 J 0.37 J		0.42 J 0.2 J		ND ND		0.26 J 0.19 J		ND ND		0.3 J 0.18 J		0.17 J ND	
Chrysene	9	0.19 J 0.32 J		0.37 J		0.2 J 0.36 J		ND		0.19 J		ND		0.33 J		ND	
bis(2-Ethylhexyl)phthalate	49	0.12 J		0.12 J		0.15 J		0.15 J		0.12 J		ND		0.19 J		ND	-
Benzo[b]fluoranthene	0.9	0.16 J		0.49 J		0.2 J		ND		0.19 J		ND		0.2 J		ND	
Benzo[k]fluoranthene Benzo[a]pyrene	0.9	0.13 J 0.17 J		0.4 J 0.55 J		0.16 J 0.2 J		ND ND		0.16 J 0.19 J		ND ND		0.17 J ND		ND ND	
Indeno[1,2,3-cd]pyrene	0.86	0.17 J		0.55 J 0.29 J		ND		ND		0.13 J		ND		ND		ND	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	ND		0.29 J		ND		ND		0.15 J		ND		ND		ND	
Pesticides/PCBs (mg/kg) gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE	2	0.023		0.032		ND		ND		0.042		ND		0.079		0.019	-
Dieldrin	0.042	ND		ND		ND		ND		ND		ND		0.028		ND	
Endrin 4.4'-DDD	17 3	ND 0.028		ND 0.047		ND 0.043		ND 0.015		ND 0.048		ND 0.105		ND 0.037		ND 0.031	
4,4'-DDT	2	ND		ND		ND		ND		0.037		0.056		0.036		ND	
gamma-Chlordane	NLE	0.015		0.015		ND		ND		ND		ND		ND		ND	-
alpha-Chlordane Arochlor 1016	NLE 0.49	0.011 ND		0.013 ND		ND ND		ND ND		ND ND		ND ND		0.017 ND		ND ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		3.082		ND		ND	
Arochlor 1254	0.49	ND		ND		1.929		ND		ND		ND		ND		ND	
Arochlor 1260 Metals (mg/kg)	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Aluminum	NLE	4760		5590		9010		12000		14000		9650		11800		12000	
Antimony	14	ND		0.612		1.06		0.553		1.17		8.45		1.57		0.82	
Arsenic Barium	20 700	4.64 23.3		4.64 49.5		6.92 31.3		10.6 39.4		11.2 51.5		9.32 39.1		13.9 57		9.03 39.4	
Beryllium	2	0.343		49.5		0.696		0.918		1.22		1.01		5/		0.957	
Cadmium	39	0.352		0.465		0.666		0.478		0.922		1.24		1.11		0.568	
Calcium	NLE	1120		1170		1650		1610		908		1440		3300		1520	
Chromium Cobalt	NLE NLE	26.9 1.65		27.6 1.54		68 2.4		63.4 3.31		122 2.12		87.5 5.22		120 3.41		64.5 3.7	
Copper	600	16.6		1.54		70.2		6.94		49.6		90		26.3		16.7	
Iron	NLE	11800		11500		22700		28500		33500		27500		29200		27100	
Lead	400	37.5		58.8		40.6		20.8		39.1		63.3		170		28.2	
Magnesium Manganese	NLE	950 61		979 63.9		2260 78.6		2600 87.9		4090 45.5		2900 180		3420 141		2560 87	
Mercury	14	0.16		0.193		0.255		0.285		4.75		3.85		1.2		2.628	
Nickel	250	4.98		5.23		7.37		9.39		8.24		9.52		13.7		8.92	-
Potassium	NLE	1270		1350		4300		5840 0.915		9380		6530		7030		5720	
Selenium Silver	63 110	0.665 ND		0.869 ND		1.26 ND		0.915 ND		1.5 ND		1.24 1.11		1.32 2.65		1.29 ND	
Sodium	NLE	94.5		125		571		191		183		126		187		128	-
Thallium	2	ND		ND		ND		ND		ND		ND		ND		ND	
Vanadium	370 1500	19.6 61.6		20.7 114		50 182		45.4 90.1		63.8 175		48.2		48.7 129		44.7 105	
Zinc	1500	Notes:		114		102		90.1		1/5	1	444		129		100	

 Notes:
 1144

 Notes:
 Notes:

 All concentrations in milligrams per kilogram (mg/kg)
 E

 E = Value exceeded linear range
 D = Value from dilution

 B = Compound in related blank
 NS:= Not Sampled

 ND:= Analyte not detected in sample
 ND:= Analyte not detected in sample

NLE=N to cleanup standard exists for this analyte J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero.

	NJDEP	1105.00															
Lab Sample ID	Cleanup	4485.22	4485.23	4485.24	4485.25	4485.26	4485.27	4491.02	4491.03	4491.04	4491.05	4491.06	4491.07	4491.08	4491.09	4491.10	4491.11
Field Sample Location	Criteria	B168 (6-12")	B168 (24")	B169 (6-12")	B169 (24")	B170 (6-12")	B170 (24")	B171 (6-12")	B171 (24")	B172 (6-12")	B172 (24")	B173 (6-12")	B173 (24")	B174 (6-12")	B174 (24")	B175 (6-12")	B175 (24")
Sample Date	(mg/kg)	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/14/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999
Volatiles (mg/kg) Acetone	1000		ND		ND		ND		ND		ND		ND		ND	1	ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene Semi-Volatiles (mg/kg)	37		ND		ND		ND		ND		ND		ND		ND		ND
Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE 3400	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Acenaphthene Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND		ND	
Azobenzene Phenanthrene	NLE	ND ND		ND ND		ND ND		ND ND		ND 0.16 J		ND ND		ND ND		ND ND	
Anthracene	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Di-n-butylphthalate	5700	0.3JB		0.7JB		ND		0.71JB		1.2 B		0.27JB		0.38JB		0.69JB	
Fluoranthene Pyrene	2300 1700	ND ND		ND ND		ND ND		ND ND		0.24 J 0.29 J		ND ND		ND ND		ND ND	
Benzo[a]anthracene	0.9	ND		ND		ND		ND		0.29 J 0.18 J		ND		ND		ND	
Chrysene	9	ND		ND		ND		ND		0.33 J		ND		ND		ND	
bis(2-Ethylhexyl)phthalate	49	ND ND		0.11 J ND		ND		ND ND		0.54 J		ND		ND ND		ND	
Benzo[b]fluoranthene Benzo[k]fluoranthene	0.9	ND		ND		ND ND		ND		0.18 J 0.13 J		ND ND		ND		ND ND	
Benzo[a]pyrene	0.66	ND		ND		ND		ND		0.18 J		ND		ND		ND	
Indeno[1,2,3-cd]pyrene	0.9	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenz[a,h]anthracene Benzo[g,h,l]perylene	0.66 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Pesticides/PCBs (mg/kg)	NEE	ND		ND		ND		ND		ND		ND		ND		ND	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE Dieldrin	2 0.042	0.018 ND		ND ND		ND ND		0.047 ND		0.04 ND		0.015 ND		0.018 ND		0.013 ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	0.037		0.017		ND		0.048		0.077		0.02		ND		0.017	
4,4'-DDT gamma-Chlordane	2 NLE	0.285 ND		ND ND		ND ND		0.038 ND		0.025 ND		ND ND		ND ND		ND ND	
alpha-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1242 Arochlor 1248	0.49	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Arochlor 1248 Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)	NLE	12400		10100		7490		12200		12100		6100		8620		10600	
Aluminum Antimony	14	0.579		ND		7490 ND		2.04		1.61		0.884		1.02		0.51	
Arsenic	20	6.78		6.00		5.39		31.4		11.8		6.39		4.73		8.21	
Barium	700	41.1		33.5		23.9		40		62.6		22.6		30.6		58.4	
Beryllium Cadmium	2 39	0.654 0.411		0.605		0.441 0.288		1.62 2.17		1.36 2.71		0.541		0.596		0.694	
Calcium	NLE	1390		1120		1190		743		2220		767		1090		1190	
Chromium	NLE	44.8		38.9		34.5		121		121		42.9		50.6		37.6	
Cobalt	NLE 600	2.52		2.93 8.46		1.68 6.49		3.94 114		3.44 53		1.54 93.1		1.87 18.7		2.79 14.3	
Copper Iron	600 NLE	11.9 19800		8.46		6.49 13700		114 37900		53 33400		93.1		18.7		14.3 21000	
Lead	400	51.5		26		13.3		116		52.5		24.9		46.5		126	
Magnesium	NLE	1950		1560		1320		4090		4050	-	1410		1810		1550	
Manganese Mercury	NLE 14	114 0.512		68 0.399		39.1 0.224		57.1 0.883		98.2 0.713		66.1 0.063		49.2 ND		163 0.144	
Nickel	250	6.55		5.92		4.33		8.64		14.3		4.1		5.42		8.02	
Potassium	NLE	3740		2950		2890		9360		9360		2560		3230		2080	
Selenium	63 110	ND ND		0.984 ND		ND ND		1.59 1.2		1.78 ND		0.85 ND		1.01 ND		0.872 ND	
Silver Sodium	110 NLE	ND 205		ND 172		ND 139		1.2		ND 249		ND 89.7		ND 126		ND 121	
Thallium	2	ND		ND		ND		ND		ND		ND		ND		ND	
Vanadium	370	38.5		29.6		23.3		61.6		60.1		29.8		35.4		42.2	
Zinc	1500	56.4		43.6		25.3		110		228		54.3		64		83.5	

 b0:4
 43.b
 25.3
 110
 228

 Notes;

 All concentrations in milligrams per kilogram (mg/kg)

 E = Value exceeded linear range

 D = Value from dilution

 B = Compound in related blank

 NS:= Not Sampled

 ND:= Kanup standard exists for this analyte

 J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero.

 N = Presumptive evidence of a comocund

																	,r
Lab Sample ID	NJDEP Cleanup	4491.12	4491.13	4491.14	4491.15	4491.16	4491.17	4491.18	4491.19	4491.20	4491.21	4491.22	4491.23	4491.24	4491.25	4491.26	4491.27
Field Sample Location	Criteria	B176 (6-12")	B176 (24")	B177 (6-12")	B177 (24")	B178 (6-12")	B178 (24")	B179 (6-12")	B179 (24")	B180 (6-12")	B180 (24")	B181 (6-12")	B181 (24")	B182 (6-12")	B182 (24")	B183 (6-12")	B183 (24")
Sample Date	(mg/kg)	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999	5/17/1999
Volatiles (mg/kg)			0,11,1000	0/11/1000	0/11/1000	0,11,1000	0/11/1000	0.11/1000	0,1171000	0,11,1000	0/11/1000	0,1171000	0,11,1000	0,1171000	0,1111000	0,11,1000	0/11/1000
Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg) Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		0.12JB		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND		ND	
Azobenzene	NLE	ND 0.16 J		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Phenanthrene Anthracene	10,000	0.16 J		ND		ND		ND		ND		ND		ND		ND	
Di-n-butylphthalate	5700	0.2JB		1.JB		1.2B		0.32JB		0.12JB		ND		0.23JB		0.15JB	
Fluoranthene	2300	0.27 J		ND		ND		ND		ND		ND		ND		0.13 J	
Pyrene	1700	0.24 J		ND		ND		0.11 J		ND		ND		ND		0.13 J	
Benzo[a]anthracene	0.9	0.14 J	-	ND	-	ND		ND		ND		ND	-	ND		ND	
Chrysene	9	0.26 J		ND		ND		ND		ND		ND		ND		ND	
bis(2-Ethylhexyl)phthalate	49	ND		ND		0.12 J		ND		ND		ND		ND		0.13 J	
Benzo[b]fluoranthene Benzo[k]fluoranthene	0.9	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Benzo[a]pyrene	0.9	ND		ND		ND		ND		ND		ND		ND		ND	
Indeno[1,2,3-cd]pyrene	0.9	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Pesticides/PCBs (mg/kg)																	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide 4.4'-DDE	NLE 2	ND 0.014		ND 0.017		ND 0.056		ND 0.055		ND 0.152		ND 0.024		ND 0.034		ND 0.027	
4,4-DDE Dieldrin	0.042	0.014 ND		0.017 ND		0.056 ND		0.055 ND		0.152 ND		0.024 ND		0.034 ND		0.027 ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	0.017		0.02		0.023		0.036		0.067		ND		ND		0.015	
4,4'-DDT	2	ND		ND		0.055		0.035		0.42		ND		0.04		ND	-
gamma-Chlordane	NLE	0.013		ND		ND		ND		ND		ND		ND		ND	
alpha-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1016 Arochlor 1242	0.49	ND ND		ND ND		ND 5.983		ND ND									
Arochlor 1242 Arochlor 1248	0.49	ND		ND		5.963 ND		ND									
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)																	
Aluminum	NLE	8970		10500		2330		2030		1290		1470		2070		1430	
Antimony	14	1.05		1.53		1.39		0.967		0.827		0.793		0.583		0.916	
Arsenic Barium	20 700	8.91 39.3		7.03 36.1		5.95 31.8		5.21 16.2		7.52 18.1		3.35 13.6		9.57 8.78		4.12 22.7	
Beryllium	2	0.717		0.793		0.243		0.525		0.218		0.147		0.171		0.192	
Cadmium	39	1.12		1.06		1.42		0.666		0.797		0.536		0.565		1.1	
Calcium	NLE	1790		2040		1050		611		1500		742		357		1800	
Chromium	NLE	59.9	-	69.4	-	16.1		17.3		9.21		9.27	-	13.7		6.03	
Cobalt	NLE	2.11		2.38		0.557		0.757		0.752		0.38		0.41		0.733	
Copper	600 NLE	21 22800		24.1 22000		16.8 6590		33.2 7080		26.8 5970		13 3710		11 8760		18.9 5690	
Iron Lead	400	68.8		22000		6590		22.9		5970 21.1		3710		9.58		5690 62	
Magnesium	A00 NLE	2270		2460		12.7		165		136		139		96.4		198	
Manganese	NLE	81.3		85.4		46.9		19.3		30.5		17.8		15.3		36.3	
Mercury	14	0.089		0.125		ND		1.9		0.805		1.11		0.361		0.545	
Nickel	250	10.4		7.65		6.38		2.14		2.79		1.35		1.2		2.91	
Potassium	NLE	4460		4760		224		210		278		134		140		283	
Selenium	63	1.28		0.908		ND		0.816		ND		ND		ND		ND	
Silver	110	ND 151		ND 142		ND		ND 78.0		ND 101		ND 72.6		ND		ND 82.9	
Sodium Thallium	NLE 2	151 ND		142 ND		82.2 ND		78.9 ND		101 ND		73.6 ND		58.8 ND		83.8 ND	
Vanadium	370	40		47.6		13.3		17.9		9.45		10		14.2		10.6	
Zinc	1500	75.6		82.4		161		33.3		47.1		24.6		18		47.6	
e l																	

 Zotes:
 State:
 4/.1

 All concentrations in milligrams per kilogram (mg/kg)
 E

 E = Value exceeded linear range
 D = Value from dilution

 B = Compound in related blank
 NS:= Not Sampled

 ND:= K.Sampled
 ND:= Analyte not detected in sample

 NLE:= No clearup standard exists for this analyte
 J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero.

Lab Gaurda ID	NJDEP	4404.00	4404.00	440.4.00	4404.00	4404.04	4404.05	4404.00	4404.07	4404.00	4404.00	4404.40	4404.44	4404.40	4404.40	4404.44	4404.45
Lab Sample ID	Cleanup	4491.28	4491.29	4494.02	4494.03	4494.04	4494.05	4494.06	4494.07	4494.08	4494.09	4494.10	4494.11	4494.12	4494.13	4494.14	4494.15
Field Sample Location	Criteria	B184 (6-12")	B184 (24")	B185 (6-12")	B185 (24")	B186 (6-12")	B186 (24")	B187 (6-12")	B187 (24")	B188 (6-12")	B188 (24")	B189 (6-12")	B189 (24")	B190 (6-12")	B190 (24")	B191 (6-12")	B191 (24")
Sample Date	(mg/kg)	5/17/1999	5/17/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999
Volatiles (mg/kg) Acetone	1000		ND		ND		ND		ND		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene Semi-Volatiles (mg/kg)	37		ND		ND		ND		ND		ND		ND		ND		ND
Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene Acenaphthene	NLE 3400	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene Azobenzene	2300 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Phenanthrene	NLE	ND		ND		ND		0.14 J		ND		ND		ND		ND	
Anthracene	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Di-n-butylphthalate	5700 2300	0.12JB ND		0.2JB ND		0.14JB 0.14 J		0.32JB 0.3 J		0.33JB ND		0.15JB ND		0.51JB ND		0.41JB ND	
Fluoranthene Pyrene	2300	ND ND		ND ND		0.14 J 0.17 J		0.3 J 0.31 J		ND ND		ND ND		0.12 J		0.14 J	
Benzo[a]anthracene	0.9	ND		ND		ND		0.19 J		ND		ND		ND		ND	
Chrysene	9	ND		ND		ND		0.35 J		ND		ND		ND		ND	
bis(2-Ethylhexyl)phthalate Benzo[b]fluoranthene	49	ND ND		ND ND		ND ND		ND 0.24 J		ND ND		ND ND		ND ND		0.12JB ND	
Benzo[k]fluoranthene	0.9	ND		ND		ND		0.17 J		ND		ND		ND		ND	
Benzo[a]pyrene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene	0.9	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Benzo[g,h,l]perylene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Pesticides/PCBs (mg/kg)																	
gamma-BHC Heptachlor Epoxide	0.52 NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
4,4'-DDE	2	0.082		ND		0.016		0.04		0.029		ND		0.071		0.052	
Dieldrin	0.042	ND		ND		ND		0.019		ND		ND		ND		0.02	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD 4,4'-DDT	3	ND 0.102		ND ND		0.017 ND		0.045 ND		0.08 ND		ND ND		ND ND		0.057 0.096	
gamma-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
alpha-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1016 Arochlor 1242	0.49	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260 Metals (mg/kg)	0.49	ND		ND		ND		ND		ND		ND		5.806		ND	
Aluminum	NLE	1620		1620		914		11800		6550		9120		9390		11300	
Antimony	14	0.402		ND	-	0.605		5.58		0.62		0.835		0.882		1.02	-
Arsenic Barium	20 700	5.91 17.5		3.67 11.4		8.39 42.7		12.3 122		5.95 34.7		9.82 56.9		8.3 142		12 95.2	
Beryllium	2	0.194		0.228		0.209		1.26		0.606		1.19		1.26		1.5	
Cadmium	39	0.626		0.669		0.459		1.83		1.35		1.2		1.94		3.72	
Calcium Chromium	NLE	969 11.4		434 11.7		1180 94.3		3680 129		2300 60		1090 135		797 124		1150 169	
Cobalt	NLE	0.578		0.481		94.3 6.51		4.69		2.47		1.44		124		1.46	
Copper	600	11.5		7.61		17.8		46.1		12.1		6.18		59.9		14.6	
Iron	NLE	5470		6370		7410		33800 84.6		17500		29900 11.5		28900		39200	
Lead Magnesium	400 NLE	56.3 212		22.6 84.2		18.7 2010		84.6 4400		21.2 1770		11.5 3770		37.7 3770		12.7 5210	
Manganese	NLE	39.6		9.83		64.8		122		39.5		18.1		48		28.9	
Mercury	14	0.965		1.32		1.69		2.09		0.275		0.254		0.365		0.378	
Nickel Potassium	250 NLE	1.57 189		1.96 71.4		1760 623		11.4 9540		9.21 3740		6.14 8560		9.52 8500		7.17 12300	
Selenium		ND		ND		ND		1.95		1.52		2.18		2.01		2.61	
ociciidii	63	ND								ND		ND					
Silver	110	ND		11.1		ND		ND		ND				ND		ND	
Silver Sodium	110 NLE	ND 356		221		144		369		146		108		124		151	
Silver	110	ND															

 32.b
 23.b
 110
 305
 59.8

 Notes:
 All concentrations in miligrams per kilogram (mg/kg)

 E = Value exceeded linear range

 D = Value from dilution

 B = Compound in related blank

 NS:= Not Sampled

 ND:= Kasung standard exists for this analyte

 J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero.

 N = Presumptive evidence of a comoound

[1			
Lab Sample ID	NJDEP	4494.16	4494.17	4494.18	4494.19	4494.20	4494.21	4527.02	4527.03	4527.04	4527.05	4527.06	4527.07	4527.08	4527.09	4527.10	4527.11
Field Sample Location	Cleanup	B192 (6-12")	B192 (24")	B193 (6-12")	B193 (24")	B194 (6-12")	B194 (24")	B195 (6-12")	B195 (24")	B196 (6-12")	B196 (24")	B197 (6-12")	B197 (24")	B198 (6-12")	B198 (24")	B199 (6-12")	B199 (24")
	Criteria (mg/kg)	· · ·		. ,							. ,		. ,			· ,	
Sample Date	(mg/ng)	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	5/18/1999	6/1/1999	6/1/1999	6/1/1999	6/1/1999	6/1/1999	6/1/1999	6/1/1999	6/1/1999	6/1/1999	6/1/1999
Volatiles (mg/kg)	1000	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND		ND	1	ND
Acetone Methylene Chloride	1000 49		ND ND		ND		ND		ND		ND		ND		ND ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene	37		ND		ND		ND		ND		ND		ND		ND		ND
Semi-Volatiles (mg/kg)																	
Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE NLE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Acenaphthylene Acenaphthene	3400	ND		ND		ND		ND		ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND		ND	
Azobenzene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Phenanthrene	NLE 10,000	0.17 J ND		0.12 J ND		ND		0.12 J ND		ND ND		ND		0.41 J		0.24 J ND	
Anthracene Di-n-butylphthalate	10,000 5700	ND 0.42JB		ND 0.16JB		ND 0.19JB		0.73JB		0.12JB		ND 0.19JB		ND 0.42JB		ND 0.86JB	
Fluoranthene	2300	0.42JB 0.34 J		0.16JB		0.19JB		0.73JB 0.21 J		ND		ND		0.42JB 0.38 J		0.86JB	
Pyrene	1700	0.34 J		0.18 J		0.17 J		0.2 J		ND		ND		0.52 J		0.3 J	
Benzo[a]anthracene	0.9	0.21 J		ND		ND		0.12 J		ND		ND		0.24 J		0.15 J	
Chrysene	9	0.4 J		ND		0.2 J		0.21 J		ND		ND		0.52 J		0.29 J	
bis(2-Ethylhexyl)phthalate	49	0.14JB		ND		ND		ND		ND		ND		0.12JB		0.12JB	
Benzo[b]fluoranthene	0.9	0.22 J 0.17 J		ND ND		ND ND		ND ND		ND ND		ND ND		0.18 J 0.16 J		0.12 J 0.11 J	
Benzo[k]fluoranthene Benzo[a]pyrene	0.9	0.17 J ND		ND		ND		ND		ND		ND		0.16 J 0.21 J		0.11 J 0.13 J	
Indeno[1,2,3-cd]pyrene	0.9	ND		ND		ND		ND		ND		ND		0.13 J		ND	
Dibenz[a,h]anthracene	0.66	ND		ND		ND		ND		ND		ND		ND		ND	
Benzo[g,h,l]perylene	NLE	ND		ND		ND		ND		ND		ND		0.15 J		ND	
Pesticides/PCBs (mg/kg)																	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide 4,4'-DDE	NLE 2	ND 0.043		ND 0.027		ND 0.078		ND 0.022		ND ND		ND 0.013		ND 0.075		ND 0.086	
Dieldrin	0.042	0.043 ND		ND		ND		ND		ND		ND		ND		ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	0.034		0.031		0.036		0.029		ND		0.054		0.074		0.17	
4,4'-DDT	2	0.158		0.035		0.26		ND		ND		ND		0.102		ND	
gamma-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
alpha-Chlordane Arochlor 1016	NLE 0.49	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Arochlor 1242	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)		0010		0510		1000		4040		054		1050		4500		4540	
Aluminum Antimony	NLE 14	8010 0.848		9510 0.937		1080 0.874		1210 0.579		851 ND		1050 0.464		1520 1.46		1510 0.915	
Antimony Arsenic	20	0.848		10.3		0.874		6.35		0.664		4.58		5.2		8.96	
Barium	700	52.9		57.4		73		14.6		3.67		30		40.9		38.5	
Beryllium	2	1.33		1.33		0.119		0.44		ND		0.221		0.473		0.85	
Cadmium	39	1.28		1.09		0.52		0.959		0.196		0.485		0.524		2.43	
Calcium	NLE	1750		1500		892		580		155		1400		1170		711	
Chromium	NLE NLE	93.4 1.93		113 1.84		12.2 0.512		16.2 0.483		3.61 0.257		7.2		21.7 0.593		18.6 0.975	
Cobalt Copper	600	1.93		1.84		0.512		0.483		0.257		0.755		0.593		0.975	
Iron	NLE	24900		26200		9820		6940		507		3950		7270		7420	
Lead	400	29.1		23.7		36.4		16.8		5.81		16.7		25.3		24.5	
Magnesium	NLE	2980		3430		135		66.6		35.3		89		95.9		64.9	
Manganese	NLE	142		24.1		8.35		5.05		2.44		15.6		5.6		6.00	
Mercury	14	0.433		0.283		0.68		0.222		0.169		0.202		0.508		0.294	
Nickel Potassium	250 NLE	8.87 6250		7.86 7020		1.92 767		3.67 279		2.28		3.32 165		3.31 110		5.23 141	
Selenium	63	1.41		1.63		1.68		0.816		ND		ND		1.04		0.937	
Silver	110	ND		ND		ND		ND		ND		ND		1.84		0.786	
Sodium	NLE	248		167		99.1		92.6		98		70.4		71.1		70.8	
Thallium	2	ND		ND		ND		ND		ND		ND		ND		ND	
Vanadium	370	45.5		52.1		10.8		11.6		3.26		11		15		14.9	
Zinc	1500	282		57.5		42.5	1	69.7	1	27.8	1	22.7		26.3	1	35.6	

 262
 57.5

 Notes;
 Notes;

 All concentrations in milligrams per kilogram (mg/kg)
 E = Value exceeded linear range

 D = Value from dilution
 B = Compound in related blank

 NS:= Not Sampled
 ND:= Analyte not detected in sample

 ND:= Analyte not detected in sample
 ND:= Analyte not detected in sample

NLE=N to cleanup standard exists for this analyte J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero.

N = Presumptive evidence of a compound *Resample for 4443.08 for Pest/PCB ref#4526.01 B100

Ç-59

	NJDEP	1507.10	1507.10	1507.44		1505.10		1507.00	1503.10	1500.00	1500.00	1500.01	1500.05	1500.00	1500.07	1500.00	
Lab Sample ID	Cleanup	4527.12	4527.13	4527.14	4527.15	4527.16	4527.17	4527.18	4527.19	4530.02	4530.03	4530.04	4530.05	4530.06	4530.07	4530.08	4530.09
Field Sample Location	Criteria	B200 (6-12")	B200 (24")	B201 (6-12")	B201 (24")	B202 (6-12")	B202 (24")	B203 (6-12")	B203 (24")	B204 (6-12")	B204 (24")	B205 (6-12")	B205 (24")	B206 (6-12")	B206 (24")	B207 (6-12")	B207 (24")
Sample Date	(mg/kg)	6/1/1999	6/1/1999	6/1/1999	6/1/1999	6/1/1999	6/1/1999	6/1/1999	6/1/1999	6/2/1999	6/2/1999	6/2/1999	6/2/1999	6/2/1999	6/2/1999	6/2/1999	6/2/1999
Volatiles (mg/kg) Acetone	1000		ND		ND		ND	1	ND		ND		ND		ND		ND
Methylene Chloride	49		ND		ND		ND		ND		ND		ND		ND		ND
Toluene	1000		ND		ND		ND		ND		ND		ND		ND		ND
Chlorobenzene Semi-Volatiles (mg/kg)	37		ND		ND		ND		ND		ND		ND		ND		ND
Naphthalene	230	ND		ND		ND		ND		ND		ND		ND		ND	
2-Methylnaphthalene	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Acenaphthylene	NLE 3400	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Acenaphthene Dibenzofuran	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND		ND		ND		0.19 J		ND	
Fluorene	2300	ND		ND		ND		ND		ND		ND		ND		ND	
Azobenzene Phenanthrene	NLE	ND 0.13 J		ND ND		ND 0.26 J		ND 0.47 J		ND ND		ND 0.13 J		ND ND		ND ND	
Anthracene	10,000	ND		ND		ND		ND		ND		ND		ND		ND	
Di-n-butylphthalate	5700	0.27JB		0.21JB		0.6JB		0.61JB		ND		0.2JB		0.19 JB		0.22JB	
Fluoranthene	2300 1700	0.26 J 0.26 J		ND ND		0.34 J 0.36 J		0.74 J 0.69 J		ND ND		0.23 J 0.2 J		ND ND		0.11 J ND	
Pyrene Benzo[a]anthracene	0.9	0.26 J 0.14 J		ND		0.36 J 0.18 J		0.89 J		ND		0.12 J		ND		ND	
Chrysene	9	0.31 J		ND		0.37 J		0.76 J		ND		0.23 J		ND		ND	
bis(2-Ethylhexyl)phthalate	49	ND		0.11JB		ND		0.14JB		ND		0.14JB		ND		0.15JB	
Benzo[b]fluoranthene Benzo[k]fluoranthene	0.9	0.18 J 0.13 J		ND ND		0.14 J 0.15 J		0.35 J 0.3 J		ND ND		0.11 J ND		ND ND		ND ND	
Benzo[a]pyrene	0.66	0.15 J		ND		0.16 J		0.36 J		ND		0.11 J		ND		ND	
Indeno[1,2,3-cd]pyrene	0.9	0.12 J		ND		ND		0.24 J		ND		ND		ND		ND	
Dibenz[a,h]anthracene Benzo[g,h,I]perylene	0.66 NLE	ND 0.13 J		ND ND		ND 0.12 J		ND 0.27 J		ND ND		ND ND		ND ND		ND ND	
Pesticides/PCBs (mg/kg)	NEE	0.100		ND		0.12.0		0.27 0		ND		ND		ND		ND	
gamma-BHC	0.52	ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDE Dieldrin	2 0.042	0.183 0.021		ND ND		0.08 ND		0.234 ND		0.023		0.094 0.013		0.117 ND		0.077 ND	
Endrin	17	ND		ND		ND		ND		ND		ND		ND		ND	
4,4'-DDD	3	0.207		ND		0.091		0.348		0.101		0.077		0.03		0.026	
4,4'-DDT gamma-Chlordane	2 NLE	0.118 ND		ND ND		0.067 ND		0.233 ND		0.027 ND		0.055 ND		0.214 ND		0.105 ND	
alpha-Chlordane	NLE	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1242 Arochlor 1248	0.49	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Arochlor 1248 Arochlor 1254	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND		ND		ND		ND		ND	
Metals (mg/kg)	N# 5	4400		499		910		5000		40400	1	0700		9240		0000	
Aluminum Antimony	NLE 14	1120 ND		499 ND		910 ND		5860 0.658		10400 0.513		9730 0.757		0.629		8230 0.657	
Arsenic	20	6.85		ND		7.98		7.34		7.89		10.3		8.64		7.18	
Barium	700	22.9		6.43		37.9		33.9		41.2		46.3		29.7		27.9	
Beryllium Cadmium	2 39	0.289 0.898		ND 0.181		0.302 0.733		0.929		0.99		0.873		0.739 2.08		0.659	
Calcium	NLE	1290		482		706		653		1530		1050		711		959	
Chromium	NLE	10.7		5.96		49.1		65.4		83.1		67.9		41.9		43.1	
Cobalt	NLE 600	0.695		ND 3.05		1.29 7.64		1.38 13.1		3.77 25.1		3.61 9.47		2.81		2.54	
Copper Iron	600 NLE	20.4 6170		3.05		7.64 6040		13.1 18000		25.1		9.47 30100		10.5		6.89	
Lead	400	36.7		2.02		18.5		49		22.8		23.1		23.9		20.5	
Magnesium	NLE	145		50.7		287		1690		3400	-	2430		1730		1450	
Manganese Mercury	NLE 14	22.9 0.592		3.66 0.265		6.73 0.222		25 0.413		58.7 0.207		77.6 0.292		115 0.215		93.1 0.242	
Nickel	250	3.85		1.06		410		7.36		11.7		10.3		8.2		7.3	
Potassium	NLE	168		139		419		3490		6680		5290		2440		2340	
Selenium	63 110	ND ND		ND ND		ND ND		1.58 ND		1.33 ND		1.09 ND		1.12 ND		0.914 ND	
Silver Sodium	110 NLE	ND 94.3		ND 158		ND 126		ND 113		231		ND 99.8		ND 334		ND 110	
Thallium	2	ND		ND		ND		ND		ND		ND		ND		ND	
Vanadium	370	11.9		3.52		9.31		34.7		60.8		49.2		35.2		37.5	
Zinc	1500	58.7		20.5		53.9		63.8		63.9		90.1		48.5		40.3	

 b8:/
 20.5
 53.9
 63.8
 63.9

 Notes:
 All concentrations in milligrams per kilogram (mg/kg)

 E = Value exceeded linear range

 D = Value from dilution

 B = Compound in related blank

 NS:= Not Sampled

 ND:E.s

 ND:E.s

 Not Resump standard exists for this analyte

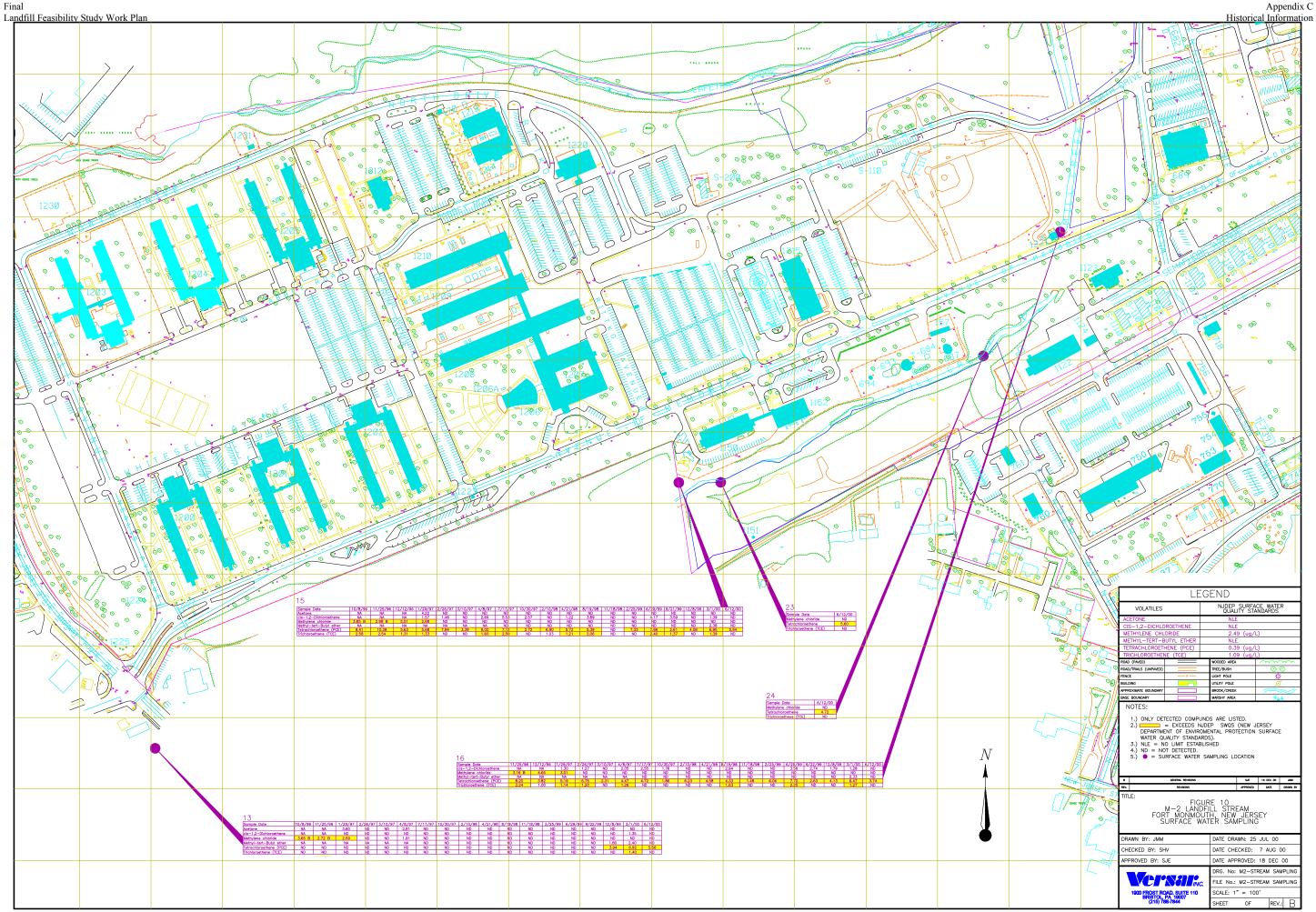
 J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero.

N = Presumptive evidence of a compound *Resample for 4443.08 for Pest/PCB ref#4526.01 B100

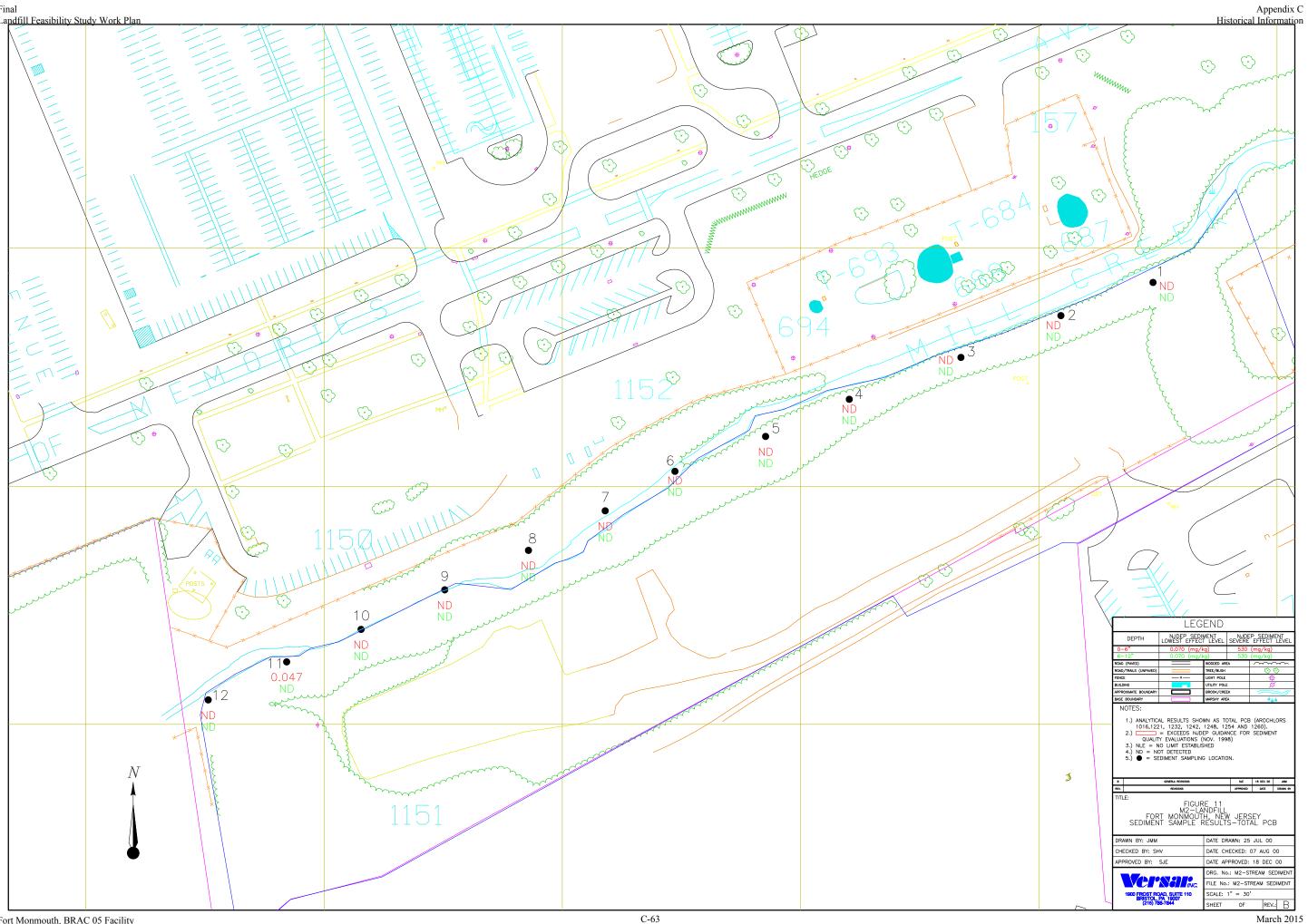
Fort Monmouth, BRAC 05 Facility Contract Number W912DY-09-D-0062, Task Order 0012 **Ç**-60

Lab Sample ID	NJDEP	4530.10	4530.11	4530.12	4530.13	4530.14	4530.15	4530.16	4530.17
Field Sample Location	Cleanup Criteria	B208 (6-12")	B208 (24")	B209 (6-12")	B209 (24")	B210 (6-12")	B210 (24")	B211 (6-12")	B211 (24")
Sample Date	(mg/kg)	6/2/1999	6/2/1999	6/2/1999	6/2/1999	6/2/1999	6/2/1999	6/2/1999	6/2/1999
/olatiles (mg/kg)									
Acetone	1000		ND		ND		ND		ND
Methylene Chloride	49		1.1B		1.2B		1.0 B		1.2B
Toluene Chlorobenzene	1000		ND ND		ND ND		ND ND		ND ND
Semi-Volatiles (mg/kg)	31		ND		ND		ND		ND
Vaphthalene	230	ND		ND		ND		ND	
2-Methylnaphthalene	230 NLE	ND		ND		ND		ND	
Acenaphthylene	NLE	ND		ND		0.16 J		0.12 J	
Acenaphthene	3400	ND		ND		ND		ND	
Dibenzofuran	NLE	ND		ND		ND		ND	
Diethylphthalate	10,000	ND		ND		ND		ND	
Fluorene	2300	ND		ND		ND		ND	
Azobenzene	NLE	ND		ND		ND		ND	
Phenanthrene	NLE	ND		0.46 J		0.45 J		0.57 J	
	10.000	ND		0.46 J		0.45 J ND		0.57 J	
Anthracene Di-n-butylobthalate	5700	0.65JB		0.51JB		0.49JB		0.72JB	
Di-n-butylphthalate Fluoranthene	2300	0.65JB ND		0.51JB 0.56 J		0.49JB 0.73 J		0.72JB 0.57 J	
	2300	ND ND		0.56 J 0.6 J		0.73 J 0.84 J		0.57 J 0.68 J	
Pyrene	0.9	ND ND		0.6 J 0.3 J		0.84 J 0.56 J		0.68 J 0.31 J	
Benzo[a]anthracene	0.9	ND ND							
Chrysene				0.61 J		1.1 J		0.68 J	
bis(2-Ethylhexyl)phthalate	49	0.12JB		0.13JB		0.12JB		0.15JB	
Benzo[b]fluoranthene	0.9	ND		0.24 J		0.49 J		0.26 J	
Benzo[k]fluoranthene	0.9	ND		0.23 J		0.49 J		0.23 J	
Benzo[a]pyrene	0.66	ND		0.27 J		0.6 J		0.3 J	
ndeno[1,2,3-cd]pyrene	0.9	ND		0.17 J		0.35 J		0.18 J	
Dibenz[a,h]anthracene	0.66	ND		ND		0.15 J		ND	
Benzo[g,h,l]perylene	NLE	ND		0.2 J		0.38 J		0.2 J	
Pesticides/PCBs (mg/kg)									
gamma-BHC	0.52	ND		ND		ND		ND	
Heptachlor Epoxide	NLE	ND		ND		ND		ND	
4,4'-DDE	2	0.012		0.07		0.057		0.058	
Dieldrin	0.042	ND		ND		ND		ND	
Endrin	17	ND		ND		ND		ND	
4,4'-DDD	3	0.015		0.114		0.071		0.043	
4,4'-DDT	2	ND		0.037		0.037		0.086	
gamma-Chlordane	NLE	ND		ND		ND		ND	
alpha-Chlordane	NLE	ND		ND		ND		ND	
Arochlor 1016	0.49	ND		ND		ND		ND	
Arochlor 1242	0.49	ND		ND		ND		ND	
Arochlor 1248	0.49	ND		ND		ND		ND	
Arochlor 1254	0.49	ND		ND		ND		ND	
Arochlor 1260	0.49	ND		ND		ND		ND	
Metals (mg/kg)									
Aluminum	NLE	6530		5390		7020		7810	
Antimony	14	0.485		1.18		0.734		1.09	
Arsenic	20	5.16		8.4		6.11		8.35	
Barium	700	17.8		44		42.3		38.7	
Beryllium	2	0.607		1.01		1.35		1.23	
Cadmium	39	0.79		1.42		1.66		1.7	
Calcium	NLE	323		928		532		679	
Chromium	NLE	50.6		65.6		72		76.3	
Cobalt	NLE	3.04		2.03		1.88		2.19	
Copper	600	344		47.5		12.8		15	
ron	NLE	17800		18500		18800		28800	
_ead	400	15.7		23.6		25		31.8	
Magnesium	NLE	1290		1610		1590		1680	
Manganese	NLE	158		20.5		22.2		21.6	
Mercury	14	1.017		0.346		0.287		0.288	
Nickel	250	6.82		6.98		11		8.69	
Potassium	NLE	2780		3360		2980		3220	
Selenium	63	0.867		1.26		1.35		2.00	
	110	ND		ND		ND		ND	
Silver		75.4		114		165		86.3	
Silver Sodium	NLE								
	NLE 2	73.4 ND		ND		ND		1.03	
Sodium						ND 39.7		1.03 43	

All concentrations in milligrams per kilogram (mg/kg)


E = Value exceeded linear range D = Value from dilution B = Compound in related blank NS:= Not Sampled

N.2. - Not sample ND= Analyte not detected in sample NLE= No cleanup standard exists for this analyte J = Estimated Value: Mass spectrometer and retention time data indicate the presence of the analyte; however, the result is less than the method detection limit, but greater than zero.


N = Presumptive evidence of a compound *Resample for 4443.08 for Pest/PCB ref#4526.01 B100

Fort Monmouth, BRAC 05 Facility Contract Number W912DY-09-D-0062, Task Order 0012

Table 6 **Stream Sampling Analytical Results** Main Post - M2 Landfill Fort Monmouth, New Jersey

Stream Sampling Location - Site #13 October 1996 - June 2000

																			NJDEP
Lab Sample ID	2178.13	2223.17	2298.17	2361.17	2375.17	2439.17	2810.17	3121.17	3331.17	3499.17	3816.17	4069.11	4300.17	4579.19	4806.10	4997.16	5211.16	5468.13	SWQS
Sample Date	10/8/96	11/25/96	1/29/97	2/26/97	3/10/97	4/8/97	7/17/97	10/30/97	2/10/98	4/21/98	8/19/98	11/18/98	2/25/99	6/29/99	9/22/99	12/8/99	3/1/00	6/12/00	(ug/L)
Acetone	NA	NA	3.60	ND	ND	2.81	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLE
cis-1,2-Dichloroethene	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.35	ND	NLE
Methylene chloride	3.76 B	2.72 B	2.59	ND	ND	1.91	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.49
Methyl-tert-Butyl ether	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.80	2.40	ND	NLE
Tetrachloroethene (PCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.94	6.92	5.56	0.39
Trichloroethene (TCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.40	ND	1.09

NOTES

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb). Exceedances of the NJDEP Surface Water Quality Standards (SWQS) are highlighted and printed in bold-faced type.

NA: Sample not analyzed for this parameter.

ND: Analyte not detected in sample.

B: Found in the Blank.

NLE: No regulatory limit has been established for this parameter.

Table 6 (continued) **Stream Sampling Analytical Results** Main Post - M2 Landfill Fort Monmouth, New Jersey

Stream Sampling Location - Site #15 October 1996 - June 2000

																				NJDEP
Lab Sample ID	2178.15	2223.09	2246.09	2298.09	2361.09	2375.09	2439.09	2810.09	3121.09	3331.09	3499.09	3816.09	4069.08	4300.09	4579.11	4802.11	4997.17	5211.17	5468.12	SWQS
Sample Date	10/8/96	11/25/96	12/12/96	1/29/97	2/26/97	3/10/97	4/8/97	7/17/97	10/30/97	2/10/98	4/21/98	8/19/98	11/18/98	2/25/99	6/29/99	9/21/99	12/8/99	3/1/00	6/12/00	(ug/L)
Acetone	NA	NA	NA	4.22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NLE
cis-1,2-Dichloroethene	NA	NA	NA	1.57	1.46	ND	2.69	5.53	2.57	ND	1.22	3.89	ND	ND	4.17	3.59	ND	1.39	ND	NLE
Methylene chloride	3.85 B	2.98 B	5.51	2.68	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.49
Methyl-tert-Butyl ether	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.38	ND	NLE
Tetrachloroethene (PCE)	8.41	10.38	5.63	5.68	7.84	3.39	6.00	7.12	2.72	6.90	5.72	5.39	ND	7.33	7.86	2.61	4.08	6.95	5.94	0.39
Trichloroethene (TCE)	2.58	2.54	1.31	1.33	ND	ND	1.60	2.50	ND	1.03	1.21	2.06	ND	ND	2.40	1.37	ND	1.39	ND	1.09

Stream Sampling Location - Site #16 November 1996 - June 2000

																			NJDEP
Lab Sample ID	2223.10	2246.10	2298.10	2361.10	2375.10	2439.10	2810.10	3121.10	3331.10	3499.10	3816.10	4069.06	4300.10	4579.12	4806.03	4997.12	5211.13	5468.14	SWQS
Sample Date	11/25/96	12/12/96	1/29/97	2/26/97	3/10/97	4/8/97	7/17/97	10/30/97	2/10/98	4/21/98	8/19/98	11/18/98	2/25/99	6/29/99	9/22/99	12/8/99	3/1/00	6/12/00	(ug/L)
cis-1,2-Dichloroethene	NA	NA	1.30	1.27	ND	2.05	2.55	1.76	ND	ND	2.94	ND	ND	3.56	2.74	1.79	1.28	ND	NLE
Methylene chloride	3.16 B	4.65	3.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.49
Methyl-tert-Butyl ether	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.33	ND	NLE
Tetrachloroethene (PCE)	8.20	3.82	5.19	6.75	2.31	4.47	4.72	1.86	6.23	4.58	4.33	1.48	6.06	7.70	2.63	4.13	6.47	3.74	0.39
Trichloroethene (TCE)	2.24	1.00	1.14	1.20	ND	1.26	ND	ND	ND	ND	1.63	ND	ND	2.25	ND	ND	1.27	ND	1.09

NOTES

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb). Exceedances of the NJDEP Surface Water Quality Standards (SWQS) are highlighted and printed in bold-faced type.

NA: Sample not analyzed for this parameter.

ND: Analyte not detected in sample.

B: Found in the Blank.

NLE: No regulatory limit has been established for this parameter.

FORTMON2\D.O. 3_M-2 LandFill\Tables\Table6\Table6streamFINAL.xls\Site #15 & #16

Table 6 (continued) Stream Sampling Analytical Results Main Post - M2 Landfill Fort Monmouth, New Jersey

Stream Sampling Location - Site #23 June 2000

		NJDEP
Lab Sample ID	5468.21	SWQS
Sample Date	6/12/00	(ug/L)
Methylene chloride	ND	2.49
Tetrachloroethene	5.60	0.39
Trichloroethene (TCE)	ND	1.09

Stream Sampling Location - Site #24 June 2000

		NJDEP
Lab Sample ID	5468.22	SWQS
Sample Date	6/12/00	(ug/L)
Methylene chloride	ND	2.49
Tetrachloroethene	4.72	0.39
Trichloroethene (TCE)	ND	1.09

NOTES

Only detected compounds are listed.

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

Exceedances of the NJDEP Surface Water Quality Standards (SWQS) are highlighted and printed in **bold-faced** type.

NA: Sample not analyzed for this parameter.

ND: Analyte not detected in sample.

B: Found in the Blank.

NLE: No regulatory limit has been established for this parameter.

C-66

1/26/01

Table 7Sediment Sampling ResultsPCB Analysis - April 2000Main Post - M2 LandfillFort Monmouth, New Jersey

	_		Sample	Arochlor	Total						
Field ID Sample Location	Depth	Lab I.D.	Time	1016	1221	1232	1242	1248	1254	1260	PCB
Lowest Effect Level (LEL)*	-	-	-	0.007	NA	NA	NA	0.030	0.060	0.005	0.070
Severe Effects Level (SEL)*	-	-	-	53.000	NA	NA	NA	150.000	34.000	24.000	530.000
1	0-6"	5346.01	13:33	ND							
1	6-12"	5346.02	13:35	ND							
2	0-6"	5346.03	13:37	ND							
2	6-12"	5346.04	13:39	ND							
3	0-6"	5346.05	13:41	ND							
3	6-12"	5346.06	13:43	ND							
4	0-6"	5346.07	13:48	ND							
4	6-12"	5346.08	13:50	ND							
5	0-6"	5346.09	13:53	ND							
5	6-12"	5346.10	13:55	ND							
6	0-6"	5346.11	13:58	ND							
6	6-12"	5346.12	14:00	ND							
7	0-6"	5346.13	14:05	ND							
7	6-12"	5346.14	14:07	ND							
8	0-6"	5346.15	14:10	ND							
8	6-12"	5346.16	14:12	ND							
9	0-6"	5346.17	14:14	ND							
9	6-12"	5346.18	14:16	ND							
10	0-6"	5346.19	14:22	ND							
10	6-12"	5346.20	14:24	ND							
11	0-6"	5346.21	14:30	ND	ND	ND	ND	ND	0.047	ND	0.047
11	6-12"	5346.22	14:33	ND							
12	0-6"	5346.23	14:35	ND							
12	6-12"	5346.24	14:38	ND							
DUP	0-6"	5346.25	-	ND	ND	ND	ND	ND	0.055	ND	0.055
DUP	6-12"	5346.26	-	ND							

* NJDEP Guidance For Sediment Quality Evaluations, November 1998

Exceedances of the NJDEP Guidances are highlighted and printed in **bold-faced** type.

All concentrations are given in milligrams per kilogram (mg/Kg), equivalent to parts per million (ppm).

NA = Not Applicable

ND = Analyte Not Detected in Sample.

Table 8Additional Surface Water Sampling ResultsPCB AnalysisMay - June 2000Main Post - M2 LandfillFort Monmouth, New Jersey

#15 Upgradient to M2 Landfill

Field ID Sample Location	Lab I.D.	Sample Datw	Sample Time	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level (ug/L) *				0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Round 1 #15 Stream Enter M2 #15 Stream Enter M2	5442.02 5449.04	5/31/00 6/1/00	8:43 14:55	ND ND	ND ND						
Round 2 #15 Stream Enter M2	5462.04	6/8/00	11:10	ND	ND						
#15 Stream Enter M2	5474.02	6/14/00	8:56	ND	ND						

* Regulatory level shown is higher of PQL and Ground Water Quality Criteria (GWQC) as per NJAC 7:9-6

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

ND: Analyte Not Detected in Sample.

PQL: Practical Quantitation Limit

Table 8 (continued) Additional Surface Water Sampling Results PCB Analysis May - June 2000 Main Post - M2 Landfill Fort Monmouth, New Jersey

#24 Downgradient to M2 Landfill

Field ID Sample Location	Lab I.D.	Sample Datw	Sample Time	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level (ug/L) *				0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Round 1											
#24 Stream Exit M2	5442.01	5/31/00	8:30	ND	ND						
#24 Stream Exit M2	5449.06	6/1/00	15:14	ND	ND						
Round 2											
#24 Stream Exit M2	5462.06	6/8/00	10:57	ND	ND						
#24 Stream Exit M2	5474.01	6/14/00	8:56	ND	ND						

* Regulatory level shown is higher of PQL and Ground Water Quality Criteria (GWQC) as per NJAC 7:9-6

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

ND: Analyte Not Detected in Sample.

PQL: Practical Quantitation Limit

Table 8 (continued) Additional Surface Water Sampling Results PCB Analysis May - June 2000 Main Post - M2 Landfill Fort Monmouth, New Jersey

#23 Downgradient to Sediment Sample #11

Field ID Sample Location	Lab I.D.	Sample Datw	Sample Time	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Total PCB
Regulatory Level (ug/L) *				0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Round 1											
#23 Below Sed. Sample #11	5442.03	5/31/00	8:37	ND	ND						
#23 Below Sed. Sample #11	5449.05	6/1/00	15:02	ND	ND						
Round 2											
#23 Below Sed. Sample #11	5462.05	6/8/00	11:02	ND	ND						
#23 Below Sed. Sample #11	5474.03	6/14/00	9:06	ND	ND						

* Regulatory level shown is higher of PQL and Ground Water Quality Criteria (GWQC) as per NJAC 7:9-6

All concentrations are given in micrograms per liter (ug/L), equivalent to parts per billion (ppb).

ND: Analyte Not Detected in Sample.

PQL: Practical Quantitation Limit

1	APPENDIX D
2	ACCIDENT PREVENTION PLAN
3	
4	(This is a placeholder only; the Accident
5	Prevention Plan was prepared under separate cover)

1	APPENDIX E
2	SAMPLING AND ANALYSIS PLAN
3	
4	(This is a placeholder only; the Sampling and
5	Analysis Plan was prepared under separate cover)